Taskology: Utilizing Task Relations at Scale
- URL: http://arxiv.org/abs/2005.07289v2
- Date: Wed, 17 Mar 2021 04:10:16 GMT
- Title: Taskology: Utilizing Task Relations at Scale
- Authors: Yao Lu, S\"oren Pirk, Jan Dlabal, Anthony Brohan, Ankita Pasad, Zhao
Chen, Vincent Casser, Anelia Angelova, Ariel Gordon
- Abstract summary: We show that we can leverage the inherent relationships among collections of tasks, as they are trained jointly.
explicitly utilizing the relationships between tasks allows improving their performance while dramatically reducing the need for labeled data.
We demonstrate our framework on subsets of the following collection of tasks: depth and normal prediction, semantic segmentation, 3D motion and ego-motion estimation, and object tracking and 3D detection in point clouds.
- Score: 28.09712466727001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many computer vision tasks address the problem of scene understanding and are
naturally interrelated e.g. object classification, detection, scene
segmentation, depth estimation, etc. We show that we can leverage the inherent
relationships among collections of tasks, as they are trained jointly,
supervising each other through their known relationships via consistency
losses. Furthermore, explicitly utilizing the relationships between tasks
allows improving their performance while dramatically reducing the need for
labeled data, and allows training with additional unsupervised or simulated
data. We demonstrate a distributed joint training algorithm with task-level
parallelism, which affords a high degree of asynchronicity and robustness. This
allows learning across multiple tasks, or with large amounts of input data, at
scale. We demonstrate our framework on subsets of the following collection of
tasks: depth and normal prediction, semantic segmentation, 3D motion and
ego-motion estimation, and object tracking and 3D detection in point clouds. We
observe improved performance across these tasks, especially in the low-label
regime.
Related papers
- Self-supervised Learning via Cluster Distance Prediction for Operating Room Context Awareness [44.15562068190958]
In the Operating Room, semantic segmentation is at the core of creating robots aware of clinical surroundings.
State-of-the-art semantic segmentation and activity recognition approaches are fully supervised, which is not scalable.
We propose a new 3D self-supervised task for OR scene understanding utilizing OR scene images captured with ToF cameras.
arXiv Detail & Related papers (2024-07-07T17:17:52Z) - Exploring Correlations of Self-Supervised Tasks for Graphs [6.977921096191354]
This paper aims to provide a fresh understanding of graph self-supervised learning based on task correlations.
We evaluate the performance of the representations trained by one specific task on other tasks and define correlation values to quantify task correlations.
We propose Graph Task Correlation Modeling (GraphTCM) to illustrate the task correlations and utilize it to enhance graph self-supervised training.
arXiv Detail & Related papers (2024-05-07T12:02:23Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
We propose a structured 3D-aware regularizer which interfaces multiple tasks through the projection of features extracted from an image encoder to a shared 3D feature space.
We show that the proposed method is architecture agnostic and can be plugged into various prior multi-task backbones to improve their performance.
arXiv Detail & Related papers (2023-10-02T08:49:56Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
We devise an efficient unified framework to solve multiple common perception tasks.
These tasks include instance segmentation, semantic segmentation, monocular 3D detection, and depth estimation.
Our proposed framework, termed D2BNet, demonstrates a unique approach to parameter-efficient predictions for multi-task perception.
arXiv Detail & Related papers (2023-06-08T09:24:46Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Learning Multiple Dense Prediction Tasks from Partially Annotated Data [41.821234589075445]
We look at jointly learning of multiple dense prediction tasks on partially annotated data, which we call multi-task partially-supervised learning.
We propose a multi-task training procedure that successfully leverages task relations to supervise its multi-task learning when data is partially annotated.
We rigorously demonstrate that our proposed method effectively exploits the images with unlabelled tasks and outperforms existing semi-supervised learning approaches and related methods on three standard benchmarks.
arXiv Detail & Related papers (2021-11-29T19:03:12Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.