Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond
- URL: http://arxiv.org/abs/2401.01219v2
- Date: Wed, 3 Jan 2024 15:00:34 GMT
- Title: Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond
- Authors: Dimitrios Kollias, Viktoriia Sharmanska, Stefanos Zafeiriou
- Abstract summary: Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
- Score: 62.406687088097605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-Task Learning (MTL) is a framework, where multiple related tasks are
learned jointly and benefit from a shared representation space, or parameter
transfer. To provide sufficient learning support, modern MTL uses annotated
data with full, or sufficiently large overlap across tasks, i.e., each input
sample is annotated for all, or most of the tasks. However, collecting such
annotations is prohibitive in many real applications, and cannot benefit from
datasets available for individual tasks. In this work, we challenge this setup
and show that MTL can be successful with classification tasks with little, or
non-overlapping annotations, or when there is big discrepancy in the size of
labeled data per task. We explore task-relatedness for co-annotation and
co-training, and propose a novel approach, where knowledge exchange is enabled
between the tasks via distribution matching. To demonstrate the general
applicability of our method, we conducted diverse case studies in the domains
of affective computing, face recognition, species recognition, and shopping
item classification using nine datasets. Our large-scale study of affective
tasks for basic expression recognition and facial action unit detection
illustrates that our approach is network agnostic and brings large performance
improvements compared to the state-of-the-art in both tasks and across all
studied databases. In all case studies, we show that co-training via
task-relatedness is advantageous and prevents negative transfer (which occurs
when MT model's performance is worse than that of at least one single-task
model).
Related papers
- Joint-Task Regularization for Partially Labeled Multi-Task Learning [30.823282043129552]
Multi-task learning has become increasingly popular in the machine learning field, but its practicality is hindered by the need for large, labeled datasets.
We propose Joint-Task Regularization (JTR), an intuitive technique which leverages cross-task relations to simultaneously regularize all tasks in a single joint-task latent space.
arXiv Detail & Related papers (2024-04-02T14:16:59Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings [57.08386016411536]
We show that it is more effective to select not only the images to be annotated but also a subset of tasks for which to provide annotations at each Active Learning (AL)
We demonstrate the effectiveness of our approach on several popular multi-task datasets.
arXiv Detail & Related papers (2022-11-21T15:08:35Z) - Learning Multi-Tasks with Inconsistent Labels by using Auxiliary Big
Task [24.618094251341958]
Multi-task learning is to improve the performance of the model by transferring and exploiting common knowledge among tasks.
We propose a framework to learn these tasks by jointly leveraging both abundant information from a learnt auxiliary big task with sufficiently many classes to cover those of all these tasks.
Our experimental results demonstrate its effectiveness in comparison with the state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-07T02:46:47Z) - Learning Multiple Dense Prediction Tasks from Partially Annotated Data [41.821234589075445]
We look at jointly learning of multiple dense prediction tasks on partially annotated data, which we call multi-task partially-supervised learning.
We propose a multi-task training procedure that successfully leverages task relations to supervise its multi-task learning when data is partially annotated.
We rigorously demonstrate that our proposed method effectively exploits the images with unlabelled tasks and outperforms existing semi-supervised learning approaches and related methods on three standard benchmarks.
arXiv Detail & Related papers (2021-11-29T19:03:12Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
We study an architecture with a shared module for all tasks and a separate output module for each task.
We show that misalignment between task data can cause negative transfer (or hurt performance) and provide sufficient conditions for positive transfer.
Inspired by the theoretical insights, we show that aligning tasks' embedding layers leads to performance gains for multi-task training and transfer learning.
arXiv Detail & Related papers (2020-05-02T23:43:52Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.