Enhancing Lattice-based Motion Planning with Introspective Learning and
Reasoning
- URL: http://arxiv.org/abs/2005.07385v2
- Date: Mon, 6 Dec 2021 10:14:45 GMT
- Title: Enhancing Lattice-based Motion Planning with Introspective Learning and
Reasoning
- Authors: Mattias Tiger, David Bergstr\"om, Andreas Norrstig, Fredrik Heintz
- Abstract summary: This work is concerned with introspective learning and reasoning about controller performance over time.
Normal controller execution of the different actions is learned using reliable and uncertainty-aware machine learning techniques.
Reasoning takes place to both verify that the learned models stays safe and to improve collision checking effectiveness in the motion planner.
- Score: 3.2689702143620143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lattice-based motion planning is a hybrid planning method where a plan made
up of discrete actions simultaneously is a physically feasible trajectory. The
planning takes both discrete and continuous aspects into account, for example
action pre-conditions and collision-free action-duration in the configuration
space. Safe motion planing rely on well-calibrated safety-margins for collision
checking. The trajectory tracking controller must further be able to reliably
execute the motions within this safety margin for the execution to be safe. In
this work we are concerned with introspective learning and reasoning about
controller performance over time. Normal controller execution of the different
actions is learned using reliable and uncertainty-aware machine learning
techniques. By correcting for execution bias we manage to substantially reduce
the safety margin of motion actions. Reasoning takes place to both verify that
the learned models stays safe and to improve collision checking effectiveness
in the motion planner by the use of more accurate execution predictions with a
smaller safety margin. The presented approach allows for explicit awareness of
controller performance under normal circumstances, and timely detection of
incorrect performance in abnormal circumstances. Evaluation is made on the
nonlinear dynamics of a quadcopter in 3D using simulation. Video:
https://youtu.be/STmZduvSUMM
Related papers
- Dynamic Tube MPC: Learning Tube Dynamics with Massively Parallel Simulation for Robust Safety in Practice [28.37162791852146]
Inevitable tracking error necessitates robustification of the nominal plan to ensure safety.
In this work, we present a novel method leveraging massively parallel simulation to learn a dynamic tube representation.
The resulting Dynamic MPC Tube is applied to the 3D hopping robot ARCHER.
arXiv Detail & Related papers (2024-11-22T21:22:51Z) - Safe multi-agent motion planning under uncertainty for drones using
filtered reinforcement learning [6.783774261623415]
We present a tractable motion planner that builds upon the strengths of reinforcement learning and constrained-control-based trajectory planning.
The proposed approach yields a safe, real-time implementable, multi-agent motion planner that is simpler to train than methods based solely on learning.
arXiv Detail & Related papers (2023-10-31T18:09:26Z) - Skip-Plan: Procedure Planning in Instructional Videos via Condensed
Action Space Learning [85.84504287685884]
Skip-Plan is a condensed action space learning method for procedure planning in instructional videos.
By skipping uncertain nodes and edges in action chains, we transfer long and complex sequence functions into short but reliable ones.
Our model explores all sorts of reliable sub-relations within an action sequence in the condensed action space.
arXiv Detail & Related papers (2023-10-01T08:02:33Z) - Safe Machine-Learning-supported Model Predictive Force and Motion
Control in Robotics [0.0]
Many robotic tasks, such as human-robot interactions or the handling of fragile objects, require tight control and limitation of appearing forces and moments alongside motion control to achieve safe yet high-performance operation.
We propose a learning-supported model predictive force and motion control scheme that provides safety guarantees while adapting to changing situations.
arXiv Detail & Related papers (2023-03-08T13:30:02Z) - Active Uncertainty Reduction for Safe and Efficient Interaction
Planning: A Shielding-Aware Dual Control Approach [9.07774184840379]
We present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm.
Our approach relies on sampling-based approximation of dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods.
arXiv Detail & Related papers (2023-02-01T01:34:48Z) - Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems [1.0323063834827415]
We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound.
We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot.
arXiv Detail & Related papers (2022-12-13T19:38:39Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Contingencies from Observations: Tractable Contingency Planning with
Learned Behavior Models [82.34305824719101]
Humans have a remarkable ability to make decisions by accurately reasoning about future events.
We develop a general-purpose contingency planner that is learned end-to-end using high-dimensional scene observations.
We show how this model can tractably learn contingencies from behavioral observations.
arXiv Detail & Related papers (2021-04-21T14:30:20Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.