Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
- URL: http://arxiv.org/abs/2503.11650v1
- Date: Fri, 14 Mar 2025 17:59:41 GMT
- Title: Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
- Authors: Chonghao Sima, Kashyap Chitta, Zhiding Yu, Shiyi Lan, Ping Luo, Andreas Geiger, Hongyang Li, Jose M. Alvarez,
- Abstract summary: We propose Centaur, which updates a planner's behavior via test-time training without relying on hand-engineered rules or cost functions.<n>We develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms.
- Score: 84.78837437133234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can we rely on an end-to-end autonomous vehicle's complex decision-making system during deployment? One common solution is to have a ``fallback layer'' that checks the planned trajectory for rule violations and replaces it with a pre-defined safe action if necessary. Another approach involves adjusting the planner's decisions to minimize a pre-defined ``cost function'' using additional system predictions such as road layouts and detected obstacles. However, these pre-programmed rules or cost functions cannot learn and improve with new training data, often resulting in overly conservative behaviors. In this work, we propose Centaur (Cluster Entropy for Test-time trAining using Uncertainty) which updates a planner's behavior via test-time training, without relying on hand-engineered rules or cost functions. Instead, we measure and minimize the uncertainty in the planner's decisions. For this, we develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms. Using data collected at prior test-time time-steps, we perform an update to the model's parameters using a gradient that minimizes the Cluster Entropy. With only this sole gradient update prior to inference, Centaur exhibits significant improvements, ranking first on the navtest leaderboard with notable gains in safety-critical metrics such as time to collision. To provide detailed insights on a per-scenario basis, we also introduce navsafe, a challenging new benchmark, which highlights previously undiscovered failure modes of driving models.
Related papers
- Reinforcement Learning with Ensemble Model Predictive Safety
Certification [2.658598582858331]
unsupervised exploration prevents the deployment of reinforcement learning algorithms on safety-critical tasks.
We propose a new algorithm that combines model-based deep reinforcement learning with tube-based model predictive control to correct the actions taken by a learning agent.
Our results show that we can achieve significantly fewer constraint violations than comparable reinforcement learning methods.
arXiv Detail & Related papers (2024-02-06T17:42:39Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
We show how model checking can be used to create multistep plans for a differential drive wheeled robot so that it can avoid immediate danger.
Using a small, purpose built model checking algorithm in situ we generate plans in real-time in a way that reflects the egocentric reactive response of simple biological agents.
arXiv Detail & Related papers (2023-11-16T11:02:29Z) - Learning-Aided Warmstart of Model Predictive Control in Uncertain
Fast-Changing Traffic [2.0965639599405366]
We use a network based multimodal predictor to generate proposals for the autonomous vehicle trajectory.
This approach enables us to identify multiple local minima and provide an improved initial guess.
We validate our approach with Monte Carlo simulations distinct scenarios.
arXiv Detail & Related papers (2023-10-04T16:00:21Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - EvCenterNet: Uncertainty Estimation for Object Detection using
Evidential Learning [26.535329379980094]
EvCenterNet is a novel uncertainty-aware 2D object detection framework.
We employ evidential learning to estimate both classification and regression uncertainties.
We train our model on the KITTI dataset and evaluate it on challenging out-of-distribution datasets.
arXiv Detail & Related papers (2023-03-06T11:07:11Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data.
CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models.
arXiv Detail & Related papers (2022-03-25T11:42:02Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.