Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search
- URL: http://arxiv.org/abs/2005.07564v2
- Date: Thu, 16 Dec 2021 07:01:57 GMT
- Title: Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search
- Authors: Xin Xia, Xuefeng Xiao, Xing Wang, Min Zheng
- Abstract summary: It has been observed that a model with higher one-shot model accuracy does not necessarily perform better when stand-alone trained.
We propose Progressive Automatic Design of search space, named PAD-NAS.
In this way, PAD-NAS can automatically design the operations for each layer and achieve a trade-off between search space quality and model diversity.
- Score: 15.017964136568061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) has attracted growing interest. To reduce
the search cost, recent work has explored weight sharing across models and made
major progress in One-Shot NAS. However, it has been observed that a model with
higher one-shot model accuracy does not necessarily perform better when
stand-alone trained. To address this issue, in this paper, we propose
Progressive Automatic Design of search space, named PAD-NAS. Unlike previous
approaches where the same operation search space is shared by all the layers in
the supernet, we formulate a progressive search strategy based on operation
pruning and build a layer-wise operation search space. In this way, PAD-NAS can
automatically design the operations for each layer and achieve a trade-off
between search space quality and model diversity. During the search, we also
take the hardware platform constraints into consideration for efficient neural
network model deployment. Extensive experiments on ImageNet show that our
method can achieve state-of-the-art performance.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - POPNASv2: An Efficient Multi-Objective Neural Architecture Search
Technique [7.497722345725035]
This paper proposes a new version of the Pareto-optimal Progressive Neural Architecture Search, called POPNASv2.
Our approach enhances its first version and improves its performance.
Our efforts allow POPNASv2 to achieve PNAS-like performance with an average 4x factor search time speed-up.
arXiv Detail & Related papers (2022-10-06T14:51:54Z) - Searching a High-Performance Feature Extractor for Text Recognition
Network [92.12492627169108]
We design a domain-specific search space by exploring principles for having good feature extractors.
As the space is huge and complexly structured, no existing NAS algorithms can be applied.
We propose a two-stage algorithm to effectively search in the space.
arXiv Detail & Related papers (2022-09-27T03:49:04Z) - You Only Search Once: On Lightweight Differentiable Architecture Search
for Resource-Constrained Embedded Platforms [10.11289927237036]
Differentiable neural architecture search (NAS) has evolved as the most dominant alternative to automatically design competitive deep neural networks (DNNs)
We introduce a lightweight hardware-aware differentiable NAS framework dubbed LightNAS, striving to find the required architecture through a one-time search.
Extensive experiments are conducted to show the superiority of LightNAS over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-08-30T02:23:23Z) - Efficient Architecture Search for Diverse Tasks [29.83517145790238]
We study neural architecture search (NAS) for efficiently solving diverse problems.
We introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations using the Fourier diagonalization of convolution.
We evaluate DASH-Bench-360, a suite of ten tasks designed for NAS benchmarking in diverse domains.
arXiv Detail & Related papers (2022-04-15T17:21:27Z) - Searching Efficient Model-guided Deep Network for Image Denoising [61.65776576769698]
We present a novel approach by connecting model-guided design with NAS (MoD-NAS)
MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer.
Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods.
arXiv Detail & Related papers (2021-04-06T14:03:01Z) - BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search [100.28980854978768]
We present Block-wisely Self-supervised Neural Architecture Search (BossNAS)
We factorize the search space into blocks and utilize a novel self-supervised training scheme, named ensemble bootstrapping, to train each block separately.
We also present HyTra search space, a fabric-like hybrid CNN-transformer search space with searchable down-sampling positions.
arXiv Detail & Related papers (2021-03-23T10:05:58Z) - Efficient Model Performance Estimation via Feature Histories [27.008927077173553]
An important step in the task of neural network design is the evaluation of a model's performance.
In this work, we use the evolution history of features of a network during the early stages of training to build a proxy classifier.
We show that our method can be combined with multiple search algorithms to find better solutions to a wide range of tasks.
arXiv Detail & Related papers (2021-03-07T20:41:57Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.