You Only Search Once: On Lightweight Differentiable Architecture Search
for Resource-Constrained Embedded Platforms
- URL: http://arxiv.org/abs/2208.14446v1
- Date: Tue, 30 Aug 2022 02:23:23 GMT
- Title: You Only Search Once: On Lightweight Differentiable Architecture Search
for Resource-Constrained Embedded Platforms
- Authors: Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu
- Abstract summary: Differentiable neural architecture search (NAS) has evolved as the most dominant alternative to automatically design competitive deep neural networks (DNNs)
We introduce a lightweight hardware-aware differentiable NAS framework dubbed LightNAS, striving to find the required architecture through a one-time search.
Extensive experiments are conducted to show the superiority of LightNAS over previous state-of-the-art methods.
- Score: 10.11289927237036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from the search efficiency, differentiable neural architecture
search (NAS) has evolved as the most dominant alternative to automatically
design competitive deep neural networks (DNNs). We note that DNNs must be
executed under strictly hard performance constraints in real-world scenarios,
for example, the runtime latency on autonomous vehicles. However, to obtain the
architecture that meets the given performance constraint, previous
hardware-aware differentiable NAS methods have to repeat a plethora of search
runs to manually tune the hyper-parameters by trial and error, and thus the
total design cost increases proportionally. To resolve this, we introduce a
lightweight hardware-aware differentiable NAS framework dubbed LightNAS,
striving to find the required architecture that satisfies various performance
constraints through a one-time search (i.e., \underline{\textit{you only search
once}}). Extensive experiments are conducted to show the superiority of
LightNAS over previous state-of-the-art methods.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - Search-time Efficient Device Constraints-Aware Neural Architecture
Search [6.527454079441765]
Deep learning techniques like computer vision and natural language processing can be computationally expensive and memory-intensive.
We automate the construction of task-specific deep learning architectures optimized for device constraints through Neural Architecture Search (NAS)
We present DCA-NAS, a principled method of fast neural network architecture search that incorporates edge-device constraints.
arXiv Detail & Related papers (2023-07-10T09:52:28Z) - Generalizable Lightweight Proxy for Robust NAS against Diverse
Perturbations [59.683234126055694]
Recent neural architecture search (NAS) frameworks have been successful in finding optimal architectures for given conditions.
We propose a novel lightweight robust zero-cost proxy that considers the consistency across features, parameters, and gradients of both clean and perturbed images.
Our approach facilitates an efficient and rapid search for neural architectures capable of learning generalizable features that exhibit robustness across diverse perturbations.
arXiv Detail & Related papers (2023-06-08T08:34:26Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
We propose a simple-but-efficient regularization method, termed as Beta-Decay, to regularize the DARTS-based NAS searching process.
Experimental results on NAS-Bench-201 show that our proposed method can help to stabilize the searching process and makes the searched network more transferable across different datasets.
arXiv Detail & Related papers (2022-03-03T11:47:14Z) - L$^{2}$NAS: Learning to Optimize Neural Architectures via
Continuous-Action Reinforcement Learning [23.25155249879658]
Differentiable architecture search (NAS) achieved remarkable results in deep neural network design.
We show that L$2$ achieves state-of-theart results on DART201 benchmark as well as NASS and Once-for-All search policies.
arXiv Detail & Related papers (2021-09-25T19:26:30Z) - Searching Efficient Model-guided Deep Network for Image Denoising [61.65776576769698]
We present a novel approach by connecting model-guided design with NAS (MoD-NAS)
MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer.
Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods.
arXiv Detail & Related papers (2021-04-06T14:03:01Z) - Memory-Efficient Hierarchical Neural Architecture Search for Image
Restoration [68.6505473346005]
We propose a memory-efficient hierarchical NAS HiNAS (HiNAS) for image denoising and image super-resolution tasks.
With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K.
arXiv Detail & Related papers (2020-12-24T12:06:17Z) - Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search [15.017964136568061]
It has been observed that a model with higher one-shot model accuracy does not necessarily perform better when stand-alone trained.
We propose Progressive Automatic Design of search space, named PAD-NAS.
In this way, PAD-NAS can automatically design the operations for each layer and achieve a trade-off between search space quality and model diversity.
arXiv Detail & Related papers (2020-05-15T14:21:07Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.