論文の概要: A Scientific Information Extraction Dataset for Nature Inspired
Engineering
- arxiv url: http://arxiv.org/abs/2005.07753v2
- Date: Tue, 26 May 2020 13:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 23:09:16.669501
- Title: A Scientific Information Extraction Dataset for Nature Inspired
Engineering
- Title(参考訳): 自然に触発されたエンジニアリングのための科学情報抽出データセット
- Authors: Ruben Kruiper, Julian F.V. Vincent, Jessica Chen-Burger, Marc P.Y.
Desmulliez, Ioannis Konstas
- Abstract要約: 本稿では,科学生物学テキストにおける中心概念間のドメインに依存しない関係を表現する,1500の手書き注釈文のデータセットについて述べる。
これらの関係の議論はマルチワード表現であり、非射影グラフを形成するためにフレーズを変更することで注釈付けされている。
このデータセットは、科学的生物学的文書の粗いタイピングを目的とした関係抽出アルゴリズムのトレーニングと評価を可能にする。
- 参考スコア(独自算出の注目度): 12.819150283584328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nature has inspired various ground-breaking technological developments in
applications ranging from robotics to aerospace engineering and the
manufacturing of medical devices. However, accessing the information captured
in scientific biology texts is a time-consuming and hard task that requires
domain-specific knowledge. Improving access for outsiders can help
interdisciplinary research like Nature Inspired Engineering. This paper
describes a dataset of 1,500 manually-annotated sentences that express
domain-independent relations between central concepts in a scientific biology
text, such as trade-offs and correlations. The arguments of these relations can
be Multi Word Expressions and have been annotated with modifying phrases to
form non-projective graphs. The dataset allows for training and evaluating
Relation Extraction algorithms that aim for coarse-grained typing of scientific
biological documents, enabling a high-level filter for engineers.
- Abstract(参考訳): 自然は、ロボティクスから航空宇宙工学、医療機器の製造まで、様々な画期的な技術発展に影響を与えた。
しかし、科学生物学のテキストで捉えた情報にアクセスすることは、ドメイン固有の知識を必要とする時間がかかり、難しい作業である。
外部からのアクセスを改善することは、Nature Inspired Engineeringのような学際的な研究に役立つ。
本稿では, トレードオフや相関関係などの科学生物学テキストにおいて, 中心概念間のドメインに依存しない関係を表現する1500文のデータセットについて述べる。
これらの関係の議論はマルチワード表現であり、非射影グラフを形成するためにフレーズを変更することで注釈付けされている。
このデータセットは、科学的生物学的文書の粗いタイピングを目的とした関係抽出アルゴリズムのトレーニングと評価を可能にする。
関連論文リスト
- SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents [49.54155332262579]
我々は,科学論文のデータセット,メソッド,タスクに関連するエンティティに対して,新たなエンティティと関係抽出データセットをリリースする。
我々のデータセットには、24k以上のエンティティと12kの関係を持つ106の注釈付きフルテキストの科学出版物が含まれています。
論文 参考訳(メタデータ) (2024-10-28T15:56:49Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
我々は,Multi-Aspect Summarization of ScientificAspectsに関する総合テキストデータセットであるMASSWを紹介する。
MASSWには過去50年間にわたる17の主要なコンピュータサイエンスカンファレンスから152,000以上の査読論文が含まれている。
我々は、この新しいデータセットを用いてベンチマーク可能な、複数の新しい機械学習タスクを通じて、MASSWの有用性を実証する。
論文 参考訳(メタデータ) (2024-06-10T15:19:09Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
生物分子モデリングと自然言語(BL)の統合は、人工知能、化学、生物学の交差点において有望な学際領域として現れてきた。
生体分子と自然言語の相互モデリングによって達成された最近の進歩について分析する。
論文 参考訳(メタデータ) (2024-03-03T14:59:47Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
我々は,大規模言語モデル(LLM)を利用した化学AIエージェントを開発し,自然言語テキストから構造化データセットを作成する。
化学者のAIエージェントであるEunomiaは、何十年もの科学研究論文から既存の知識を活用して、行動を計画し実行することができる。
論文 参考訳(メタデータ) (2023-12-18T20:29:58Z) - Using Natural Language Processing and Networks to Automate Structured Literature Reviews: An Application to Farmers Climate Change Adaptation [0.0]
本研究の目的は、変数関係を抽出し、それらの結果をネットワークを用いて合成することで、自然言語処理を巧みに活用することである。
一例として,農家の気候変動適応の分析に本手法を適用した。
その結果,自然言語処理とネットワークを記述的手法で併用することで,文献レビューの結果を高速かつ解釈可能な方法で合成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-16T10:05:47Z) - The Semantic Scholar Open Data Platform [79.4493235243312]
セマンティック・スカラー(Semantic Scholar、S2)は、学術文献の発見と理解を支援することを目的としたオープンデータプラットフォームおよびウェブサイトである。
我々は、学術的なPDFコンテンツ抽出と知識グラフの自動構築のための最先端技術を用いて、パブリックおよびプロプライエタリなデータソースを組み合わせる。
このグラフには、構造解析されたテキスト、自然言語要約、ベクトル埋め込みなどの高度な意味的特徴が含まれている。
論文 参考訳(メタデータ) (2023-01-24T17:13:08Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
最近の研究では、非ヒト種における音響コミュニケーションを分析するための機械学習ツールの約束を示した。
マッコウクジラの大量生物音響データの収集と処理に必要な重要な要素について概説する。
開発された技術能力は、非人間コミュニケーションと動物行動研究を研究する幅広いコミュニティにおいて、クロス応用と進歩をもたらす可能性が高い。
論文 参考訳(メタデータ) (2021-04-17T18:39:22Z) - Semantic maps and metrics for science Semantic maps and metrics for
science using deep transformer encoders [1.599072005190786]
ディープトランスフォーマーネットワークによる自然言語理解の最近の進歩は、マッピング科学に新たな可能性をもたらす。
トランスフォーマー埋め込みモデルは、異なる言語文脈で異なる関連と意味の陰を捉えます。
本稿では,これらのツールを用いて学術文書を符号化する手法について報告する。
論文 参考訳(メタデータ) (2021-04-13T04:12:20Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
我々は、自然言語処理(NLP)とグラフニューラルネットワーク(GNN)を用いて、記事の意味的・関係的な側面に基づく文書レベルの埋め込みに焦点を当てる。
論文のセマンティックな空間をNLPでエンコードできるのに対し、GNNでは研究コミュニティの社会的実践をエンコードするリレーショナルな空間を構築することができる。
論文 参考訳(メタデータ) (2020-11-05T14:57:41Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。