Various Total Variation for Snapshot Video Compressive Imaging
- URL: http://arxiv.org/abs/2005.08028v1
- Date: Sat, 16 May 2020 16:20:56 GMT
- Title: Various Total Variation for Snapshot Video Compressive Imaging
- Authors: Xin Yuan
- Abstract summary: snapshot compressive imaging (SCI) was proposed to capture the high-dimensional (usually 3D) images using a 2D sensor (detector)
Following this, reconstruction algorithms are employed to retrieve the high-dimensional data.
This paper aims to answer the question of which TV penalty (anisotropic TV, isotropic TV and vectorized TV) works best for video SCI reconstruction?
- Score: 7.601695814245209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling high-dimensional images is challenging due to limited availability
of sensors; scanning is usually necessary in these cases. To mitigate this
challenge, snapshot compressive imaging (SCI) was proposed to capture the
high-dimensional (usually 3D) images using a 2D sensor (detector). Via novel
optical design, the {\em measurement} captured by the sensor is an encoded
image of multiple frames of the 3D desired signal. Following this,
reconstruction algorithms are employed to retrieve the high-dimensional data.
Though various algorithms have been proposed, the total variation (TV) based
method is still the most efficient one due to a good trade-off between
computational time and performance. This paper aims to answer the question of
which TV penalty (anisotropic TV, isotropic TV and vectorized TV) works best
for video SCI reconstruction? Various TV denoising and projection algorithms
are developed and tested for video SCI reconstruction on both simulation and
real datasets.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Deep Optics for Video Snapshot Compressive Imaging [10.830072985735175]
Video snapshot imaging (SCI) aims to capture a sequence of video frames with only a single shot of a 2D detector.
This paper presents a framework to jointly optimize masks and a reconstruction network.
We believe this is a milestone for real-world video SCI.
arXiv Detail & Related papers (2024-04-08T08:04:44Z) - Splatter Image: Ultra-Fast Single-View 3D Reconstruction [67.96212093828179]
Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images.
We learn a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS.
On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works.
arXiv Detail & Related papers (2023-12-20T16:14:58Z) - Unfolding Framework with Prior of Convolution-Transformer Mixture and
Uncertainty Estimation for Video Snapshot Compressive Imaging [7.601695814245209]
We consider the problem of video snapshot compressive imaging (SCI), where sequential high-speed frames are modulated by different masks and captured by a single measurement.
By combining optimization algorithms and neural networks, deep unfolding networks (DUNs) score tremendous achievements in solving inverse problems.
arXiv Detail & Related papers (2023-06-20T06:25:48Z) - EfficientSCI: Densely Connected Network with Space-time Factorization
for Large-scale Video Snapshot Compressive Imaging [6.8372546605486555]
We show that an UHD color video with high compression ratio can be reconstructed from a snapshot 2D measurement using a single end-to-end deep learning model with PSNR above 32 dB.
Our method significantly outperforms all previous SOTA algorithms with better real-time performance.
arXiv Detail & Related papers (2023-05-17T07:28:46Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - 10-mega pixel snapshot compressive imaging with a hybrid coded aperture [48.95666098332693]
High resolution images are widely used in our daily life, whereas high-speed video capture is challenging due to the low frame rate of cameras working at the high resolution mode.
snapshot imaging (SCI) was proposed as a solution to the low throughput of existing imaging systems.
arXiv Detail & Related papers (2021-06-30T01:09:24Z) - Memory-Efficient Network for Large-scale Video Compressive Sensing [21.040260603729227]
Video snapshot imaging (SCI) captures a sequence of video frames in a single shot using a 2D detector.
In this paper, we develop a memory-efficient network for large-scale video SCI based on multi-group reversible 3D convolutional neural networks.
arXiv Detail & Related papers (2021-03-04T15:14:58Z) - Exploiting Raw Images for Real-Scene Super-Resolution [105.18021110372133]
We study the problem of real-scene single image super-resolution to bridge the gap between synthetic data and real captured images.
We propose a method to generate more realistic training data by mimicking the imaging process of digital cameras.
We also develop a two-branch convolutional neural network to exploit the radiance information originally-recorded in raw images.
arXiv Detail & Related papers (2021-02-02T16:10:15Z) - Plug-and-Play Algorithms for Video Snapshot Compressive Imaging [41.818167109996885]
We consider the reconstruction problem of snapshot video imaging (SCI) using a low-speed 2D sensor (detector)
The underlying principle SCI is to modulate frames with different masks and then encoded frames are integrated into a snapshot on the sensor.
Applying SCI to largescale problems (HD or UHD videos) in our daily life is still challenging one bottlenecks lies in the reconstruction algorithm.
arXiv Detail & Related papers (2021-01-13T00:51:49Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.