Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation
- URL: http://arxiv.org/abs/2004.02186v2
- Date: Sat, 20 Jun 2020 08:35:57 GMT
- Title: Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation
- Authors: Edoardo Remelli, Shangchen Han, Sina Honari, Pascal Fua, Robert Wang
- Abstract summary: We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
- Score: 57.11299763566534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a lightweight solution to recover 3D pose from multi-view images
captured with spatially calibrated cameras. Building upon recent advances in
interpretable representation learning, we exploit 3D geometry to fuse input
images into a unified latent representation of pose, which is disentangled from
camera view-points. This allows us to reason effectively about 3D pose across
different views without using compute-intensive volumetric grids. Our
architecture then conditions the learned representation on camera projection
operators to produce accurate per-view 2d detections, that can be simply lifted
to 3D via a differentiable Direct Linear Transform (DLT) layer. In order to do
it efficiently, we propose a novel implementation of DLT that is orders of
magnitude faster on GPU architectures than standard SVD-based triangulation
methods. We evaluate our approach on two large-scale human pose datasets (H36M
and Total Capture): our method outperforms or performs comparably to the
state-of-the-art volumetric methods, while, unlike them, yielding real-time
performance.
Related papers
- Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
We introduce DUSt3R, a novel paradigm for Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections.
We show that this formulation smoothly unifies the monocular and binocular reconstruction cases.
Our formulation directly provides a 3D model of the scene as well as depth information, but interestingly, we can seamlessly recover from it, pixel matches, relative and absolute camera.
arXiv Detail & Related papers (2023-12-21T18:52:14Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries [43.02373021724797]
We introduce a framework for multi-camera 3D object detection.
Our method manipulates predictions directly in 3D space.
We achieve state-of-the-art performance on the nuScenes autonomous driving benchmark.
arXiv Detail & Related papers (2021-10-13T17:59:35Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
arXiv Detail & Related papers (2020-09-07T17:58:27Z) - Light3DPose: Real-time Multi-Person 3D PoseEstimation from Multiple
Views [5.510992382274774]
We present an approach to perform 3D pose estimation of multiple people from a few calibrated camera views.
Our architecture aggregates feature-maps from a 2D pose estimator backbone into a comprehensive representation of the 3D scene.
The proposed method is inherently efficient: as a pure bottom-up approach, it is computationally independent of the number of people in the scene.
arXiv Detail & Related papers (2020-04-06T14:12:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.