Virial relations for electrons coupled to quantum field modes
- URL: http://arxiv.org/abs/2005.08240v2
- Date: Tue, 15 Sep 2020 12:28:47 GMT
- Title: Virial relations for electrons coupled to quantum field modes
- Authors: Iris Theophilou, Markus Penz, Michael Ruggenthaler and Angel Rubio
- Abstract summary: We present a set of virial relations for many electron systems coupled to field modes.
The relevance of such virial relations is demonstrated by showing a connection to mass renormalization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present a set of virial relations for many electron systems
coupled to field modes, described by the Pauli--Fierz Hamiltonian in dipole
approximation and using length gauge. Currently, there is growing interest in
solutions of this Hamiltonian due to its relevance for describing molecular
systems strongly coupled to photonic modes in cavities, and in the possible
modification of chemical properties of such systems compared to the ones in
free space. The relevance of such virial relations is demonstrated by showing a
connection to mass renormalization and by providing an exact way to obtain
total energies from potentials in the framework of Quantum Electrodynamical
Density Functional Theory.
Related papers
- Extending the Tavis-Cummings model for molecular ensembles -- Exploring the effects of dipole self energies and static dipole moments [0.0]
We extend the Tavis-Cummings model for molecular ensembles.
We simulate excited-state dynamics and spectroscopy of MgH$+$ molecules resonantly coupled to an optical cavity.
arXiv Detail & Related papers (2024-04-16T15:58:40Z) - Interpolating many-body wave functions for accelerated molecular dynamics on the near-exact electronic surface [0.0]
We develop a scheme for the correlated many-electron state through the space of atomic configurations.
We demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics.
We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories.
arXiv Detail & Related papers (2024-02-16T22:03:37Z) - Quantum Electrodynamics with Time-varying Dielectrics [0.0]
We present a framework for quantization of electromagnetic field in the presence of dielectric media with time-varying optical properties.
We obtain the normal modes of the coupled light-matter degrees of freedom, showing that the corresponding creation and operators obey equal-time canonical commutation relations.
Our results are pertinent to time-varying boundary conditions realizable across a wide range of state-of-the-art physical platforms and timescales.
arXiv Detail & Related papers (2023-10-21T00:58:34Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coupled Hydrodynamics in Dipole-Conserving Quantum Systems [0.0]
We investigate the coupled dynamics of charge and energy in interacting lattice models with dipole conservation.
We numerically verify its applicability to the late-time dynamics of a specific bosonic quantum system.
We discuss the relation of our results to experiments in ultracold atom quantum simulators.
arXiv Detail & Related papers (2022-01-21T19:00:01Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Weak-to-Strong Light-Matter Coupling and Dissipative Dynamics from First
Principles [0.0]
We generalize ab initio quantum-electrodynamical density functional theory to account for dissipative dynamics.
We study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling.
arXiv Detail & Related papers (2020-02-24T19:00:00Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.