論文の概要: Facial Action Unit Detection using 3D Facial Landmarks
- arxiv url: http://arxiv.org/abs/2005.08343v1
- Date: Sun, 17 May 2020 19:02:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 05:43:33.206431
- Title: Facial Action Unit Detection using 3D Facial Landmarks
- Title(参考訳): 3次元顔ランドマークを用いた顔行動単位検出
- Authors: Saurabh Hinduja and Shaun Canavan
- Abstract要約: 形状指数に基づく統計的形状モデルを用いて3次元顔のランドマーク上に2次元畳み込みニューラルネットワーク(CNN)を訓練する。
提案手法は,顔のランドマークの動きがAUの動きと直接対応するため,AUの発生を正確にモデル化できることを示す。
提案手法を用いて,330,000フレーム以上のAUを複数検出し,最先端手法による改善結果を報告する。
- 参考スコア(独自算出の注目度): 0.4873362301533825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose to detect facial action units (AU) using 3D facial
landmarks. Specifically, we train a 2D convolutional neural network (CNN) on 3D
facial landmarks, tracked using a shape index-based statistical shape model,
for binary and multi-class AU detection. We show that the proposed approach is
able to accurately model AU occurrences, as the movement of the facial
landmarks corresponds directly to the movement of the AUs. By training a CNN on
3D landmarks, we can achieve accurate AU detection on two state-of-the-art
emotion datasets, namely BP4D and BP4D+. Using the proposed method, we detect
multiple AUs on over 330,000 frames, reporting improved results over
state-of-the-art methods.
- Abstract(参考訳): 本稿では,3次元顔ランドマークを用いた顔動作単位(au)の検出を提案する。
具体的には,3次元顔ランドマーク上で2次元畳み込みニューラルネットワーク(cnn)を訓練し,形状指数に基づく統計的形状モデルを用いて2値および多値au検出を行う。
提案手法は,顔のランドマークの動きがAUの動きと直接対応するため,AUの発生を正確にモデル化できることを示す。
CNNを3Dランドマークでトレーニングすることで、最先端の2つの感情データセット、すなわちBP4DとBP4D+の正確なAU検出が可能になる。
提案手法を用いて,330,000フレーム以上のAUを複数検出し,最先端手法による改善結果を報告する。
関連論文リスト
- CatFree3D: Category-agnostic 3D Object Detection with Diffusion [63.75470913278591]
本稿では,2次元検出と深度予測から3次元検出を分離するパイプラインを提案する。
また,3次元検出結果の正確な評価のために,正規化ハンガリー距離(NHD)指標も導入した。
論文 参考訳(メタデータ) (2024-08-22T22:05:57Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - Automatic 3D Registration of Dental CBCT and Face Scan Data using 2D
Projection Images [0.9226931037259524]
本稿では,歯科用コーンビームCT(CBCT)と顔スキャンデータの完全自動登録法を提案する。
3Dデジタル治療計画や矯正手術など、様々な用途で3D顎顔面モデルのデジタルプラットフォームとして使用できる。
論文 参考訳(メタデータ) (2023-05-17T11:26:43Z) - Consistency of Implicit and Explicit Features Matters for Monocular 3D
Object Detection [4.189643331553922]
モノクロ3D物体検出は、低コストの自律エージェントが周囲を知覚する一般的な解決策である。
本報告では,3次元表現における暗黙的特徴と明示的特徴の相違を解消するために,第1の配向認識画像バックボーンを用いたCIEFを提案する。
CIEFは、提出時にKITTIの3DおよびBEV検出ベンチマークで報告されたすべての手法の中で、第1位にランクされた。
論文 参考訳(メタデータ) (2022-07-16T13:00:32Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - Automated 3D cephalometric landmark identification using computerized
tomography [1.4349468613117398]
頭蓋骨の形状を代用する3次元頭蓋骨計測のランドマークの同定は、頭蓋骨計測の基本的なステップである。
近年,ディープラーニング(dl)を用いた2次元頭部画像の自動ランドマーク作成が大きな成功を収めているが,80以上のランドマークに対する3次元ランドマークは,まだ満足のいくレベルには達していない。
本論文では,匿名化されたランドマークデータセットと対のCTデータを取り除いた,半教師付き3次元ランドマーク用DL法を提案する。
論文 参考訳(メタデータ) (2020-12-16T07:29:32Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - Region Proposal Network with Graph Prior and IoU-Balance Loss for
Landmark Detection in 3D Ultrasound [16.523977092204813]
3D超音波(US)は胎児の成長モニタリングのための詳細な出生前検査を容易にする。
3DUSボリュームを分析するためには、解剖学的ランドマークを正確に同定することが基本である。
我々は3次元顔USボリュームのランドマークを検出するためにオブジェクト検出フレームワークを利用する。
論文 参考訳(メタデータ) (2020-04-01T03:00:03Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。