Learn Class Hierarchy using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2005.08622v1
- Date: Mon, 18 May 2020 12:06:43 GMT
- Title: Learn Class Hierarchy using Convolutional Neural Networks
- Authors: Riccardo La Grassa, Ignazio Gallo, Nicola Landro
- Abstract summary: We propose a new architecture for hierarchical classification of images, introducing a stack of deep linear layers with cross-entropy loss functions and center loss combined.
We experimentally show that our hierarchical classifier presents advantages to the traditional classification approaches finding application in computer vision tasks.
- Score: 0.9569316316728905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large amount of research on Convolutional Neural Networks has focused on
flat Classification in the multi-class domain. In the real world, many problems
are naturally expressed as problems of hierarchical classification, in which
the classes to be predicted are organized in a hierarchy of classes. In this
paper, we propose a new architecture for hierarchical classification of images,
introducing a stack of deep linear layers with cross-entropy loss functions and
center loss combined. The proposed architecture can extend any neural network
model and simultaneously optimizes loss functions to discover local
hierarchical class relationships and a loss function to discover global
information from the whole class hierarchy while penalizing class hierarchy
violations. We experimentally show that our hierarchical classifier presents
advantages to the traditional classification approaches finding application in
computer vision tasks.
Related papers
- Harnessing Superclasses for Learning from Hierarchical Databases [1.835004446596942]
In many large-scale classification problems, classes are organized in a known hierarchy, typically represented as a tree.
We introduce a loss for this type of supervised hierarchical classification.
Our approach does not entail any significant additional computational cost compared with the loss of cross-entropy.
arXiv Detail & Related papers (2024-11-25T14:39:52Z) - How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model [47.617093812158366]
We introduce the Random Hierarchy Model: a family of synthetic tasks inspired by the hierarchical structure of language and images.
We find that deep networks learn the task by developing internal representations invariant to exchanging equivalent groups.
Our results indicate how deep networks overcome the curse of dimensionality by building invariant representations.
arXiv Detail & Related papers (2023-07-05T09:11:09Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Encoding Hierarchical Information in Neural Networks helps in
Subpopulation Shift [8.01009207457926]
Deep neural networks have proven to be adept in image classification tasks, often surpassing humans in terms of accuracy.
In this work, we study the aforementioned problems through the lens of a novel conditional supervised training framework.
We show that learning in this structured hierarchical manner results in networks that are more robust against subpopulation shifts.
arXiv Detail & Related papers (2021-12-20T20:26:26Z) - United We Learn Better: Harvesting Learning Improvements From Class
Hierarchies Across Tasks [9.687531080021813]
We present a theoretical framework based on probability and set theory for extracting parent predictions and a hierarchical loss.
Results show results across classification and detection benchmarks and opening up the possibility of hierarchical learning for sigmoid-based detection architectures.
arXiv Detail & Related papers (2021-07-28T20:25:37Z) - Connecting Sphere Manifolds Hierarchically for Regularization [16.082095595061617]
We consider classification problems with hierarchically organized classes.
Our technique replaces the last layer of a neural network by combining a spherical fully-connected layer with a hierarchical layer.
This regularization is shown to improve the performance of widely used deep neural network architectures.
arXiv Detail & Related papers (2021-06-25T10:51:36Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Adaptive Hierarchical Decomposition of Large Deep Networks [4.272649614101117]
As datasets get larger, a natural question is if existing deep learning architectures can be extended to handle the 50+K classes thought to be perceptible by a typical human.
This paper introduces a framework that automatically analyzes and configures a family of smaller deep networks as a replacement to a singular, larger network.
The resulting smaller networks are highly scalable, parallel and more practical to train, and achieve higher classification accuracy.
arXiv Detail & Related papers (2020-07-17T21:04:50Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.