United We Learn Better: Harvesting Learning Improvements From Class
Hierarchies Across Tasks
- URL: http://arxiv.org/abs/2107.13627v1
- Date: Wed, 28 Jul 2021 20:25:37 GMT
- Title: United We Learn Better: Harvesting Learning Improvements From Class
Hierarchies Across Tasks
- Authors: Sindi Shkodrani, Yu Wang, Marco Manfredi, N\'ora Baka
- Abstract summary: We present a theoretical framework based on probability and set theory for extracting parent predictions and a hierarchical loss.
Results show results across classification and detection benchmarks and opening up the possibility of hierarchical learning for sigmoid-based detection architectures.
- Score: 9.687531080021813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attempts of learning from hierarchical taxonomies in computer vision have
been mostly focusing on image classification. Though ways of best harvesting
learning improvements from hierarchies in classification are far from being
solved, there is a need to target these problems in other vision tasks such as
object detection. As progress on the classification side is often dependent on
hierarchical cross-entropy losses, novel detection architectures using sigmoid
as an output function instead of softmax cannot easily apply these advances,
requiring novel methods in detection. In this work we establish a theoretical
framework based on probability and set theory for extracting parent predictions
and a hierarchical loss that can be used across tasks, showing results across
classification and detection benchmarks and opening up the possibility of
hierarchical learning for sigmoid-based detection architectures.
Related papers
- Harnessing Superclasses for Learning from Hierarchical Databases [1.835004446596942]
In many large-scale classification problems, classes are organized in a known hierarchy, typically represented as a tree.
We introduce a loss for this type of supervised hierarchical classification.
Our approach does not entail any significant additional computational cost compared with the loss of cross-entropy.
arXiv Detail & Related papers (2024-11-25T14:39:52Z) - Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - Fine-Grained ImageNet Classification in the Wild [0.0]
Robustness tests can uncover several vulnerabilities and biases which go unnoticed during the typical model evaluation stage.
In our work, we perform fine-grained classification on closely related categories, which are identified with the help of hierarchical knowledge.
arXiv Detail & Related papers (2023-03-04T12:25:07Z) - Hierarchical classification at multiple operating points [1.520694326234112]
We present an efficient algorithm to produce operating characteristic curves for any method that assigns a score to every class in the hierarchy.
We propose two novel loss functions and show that a soft variant of the structured hinge loss is able to significantly outperform the flat baseline.
arXiv Detail & Related papers (2022-10-19T23:36:16Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Provable Hierarchy-Based Meta-Reinforcement Learning [50.17896588738377]
We analyze HRL in the meta-RL setting, where learner learns latent hierarchical structure during meta-training for use in a downstream task.
We provide "diversity conditions" which, together with a tractable optimism-based algorithm, guarantee sample-efficient recovery of this natural hierarchy.
Our bounds incorporate common notions in HRL literature such as temporal and state/action abstractions, suggesting that our setting and analysis capture important features of HRL in practice.
arXiv Detail & Related papers (2021-10-18T17:56:02Z) - Fair Hierarchical Clustering [92.03780518164108]
We define a notion of fairness that mitigates over-representation in traditional clustering.
We show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.
arXiv Detail & Related papers (2020-06-18T01:05:11Z) - Learn Class Hierarchy using Convolutional Neural Networks [0.9569316316728905]
We propose a new architecture for hierarchical classification of images, introducing a stack of deep linear layers with cross-entropy loss functions and center loss combined.
We experimentally show that our hierarchical classifier presents advantages to the traditional classification approaches finding application in computer vision tasks.
arXiv Detail & Related papers (2020-05-18T12:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.