論文の概要: Intracranial Hemorrhage Detection Using Neural Network Based Methods
With Federated Learning
- arxiv url: http://arxiv.org/abs/2005.08644v3
- Date: Thu, 17 Mar 2022 05:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 01:46:44.968256
- Title: Intracranial Hemorrhage Detection Using Neural Network Based Methods
With Federated Learning
- Title(参考訳): フェデレーション学習を用いたニューラルネットワークを用いた脳内出血検出
- Authors: Utkarsh Chandra Srivastava, Anshuman Singh, Dr. K. Sree Kumar
- Abstract要約: 頭蓋内出血は頭蓋内出血であり、急速かつしばしば集中治療を必要とする深刻な健康上の問題である。
我々は,CTスキャンに基づいて条件の探索と分類を行うニューラルネットワーク手法を提案する。
このようなアーキテクチャから92%以上の精度を観測し、十分なデータを提供しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intracranial hemorrhage, bleeding that occurs inside the cranium, is a
serious health problem requiring rapid and often intensive medical treatment.
Such a condition is traditionally diagnosed by highly-trained specialists
analyzing computed tomography (CT) scan of the patient and identifying the
location and type of hemorrhage if one exists. We propose a neural network
approach to find and classify the condition based upon the CT scan. The model
architecture implements a time distributed convolutional network. We observed
accuracy above 92% from such an architecture, provided enough data. We propose
further extensions to our approach involving the deployment of federated
learning. This would be helpful in pooling learned parameters without violating
the inherent privacy of the data involved.
- Abstract(参考訳): 頭蓋内出血は頭蓋内出血であり、急速かつしばしば集中治療を必要とする深刻な健康上の問題である。
このような症状は、コンピュータ断層撮影(CT)を解析し、もし存在するなら出血の場所とタイプを特定する高度に訓練された専門家によって伝統的に診断される。
我々は,CTスキャンに基づいて条件の探索と分類を行うニューラルネットワーク手法を提案する。
モデルアーキテクチャは時間分散畳み込みネットワークを実装している。
このようなアーキテクチャから92%以上の精度で十分なデータを得た。
我々は,フェデレーション学習の展開を含むアプローチのさらなる拡張を提案する。
これは、関連するデータの固有のプライバシーに違反せずに学習パラメータをプールするのに役立ちます。
関連論文リスト
- Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
データ不均衡問題に対処するため,textbfClass textbfAttention to textbfRegions of the lesion (CARE)を提案する。
CAREフレームワークは、まれな疾患の病変領域を表すために、バウンディングボックスを必要とする。
その結果,自動バウンディングボックス生成によるCARE変種は,オリジナルのCAREフレームワークに匹敵することがわかった。
論文 参考訳(メタデータ) (2023-07-19T15:19:02Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - UniToBrain dataset: a Brain Perfusion Dataset [2.02258267891574]
では、UniToBrainを紹介します。
本稿では,画像処理と深層学習モデル開発のために,欧州のECVLとEDDLを用いたニューラルネットワークに基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-01T07:16:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Explaining Predictions of Deep Neural Classifier via Activation Analysis [0.11470070927586014]
本稿では,畳み込みニューラルネットワーク(CNN)に基づく深層学習システムを実行する人間専門家に対して,意思決定プロセスの説明と支援を行う新しいアプローチを提案する。
以上の結果から,本手法は既存のアトラスから最も類似した予測を識別できる別個の予測戦略を検出することができることが示された。
論文 参考訳(メタデータ) (2020-12-03T20:36:19Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Looking in the Right place for Anomalies: Explainable AI through
Automatic Location Learning [51.72146225623288]
我々は、予測された位置をオーバーラップすることを保証した、説明可能なAIへのアプローチを開発する。
ResNet101に基づく後続のアテンション誘導推論ネットワークにバイアスを与えるためにこの期待位置を使用することで、期待位置における異常の分離が実現される。
論文 参考訳(メタデータ) (2020-08-02T00:02:37Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
RSNA頭蓋内出血検出のためのシステムについて紹介する。
提案システムは,畳み込みニューラルネットワーク(CNN)を用いた軽量深層ニューラルネットワークアーキテクチャに基づいている。
最終テストセットの重み付き平均ログ損失は0.04989で、合計1345名から上位30名(2%)にランクインした。
論文 参考訳(メタデータ) (2020-08-01T17:28:25Z) - A Systematic Search over Deep Convolutional Neural Network Architectures
for Screening Chest Radiographs [4.6411273009803065]
胸部X線写真は肺・胸部疾患のスクリーニングに用いられる。
近年の取り組みは、深層畳み込みニューラルネットワーク(CNN)のアンサンブルを用いた性能ベンチマークを実証している。
複数の標準CNNアーキテクチャを体系的に探索し、分類性能がアンサンブルと同等であることが判明した単一候補モデルを特定した。
論文 参考訳(メタデータ) (2020-04-24T12:30:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。