論文の概要: Anomaly Detection in Cloud Components
- arxiv url: http://arxiv.org/abs/2005.08739v2
- Date: Fri, 7 Aug 2020 14:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:41:25.097968
- Title: Anomaly Detection in Cloud Components
- Title(参考訳): 雲成分の異常検出
- Authors: Mohammad Saiful Islam and Andriy Miranskyy
- Abstract要約: Gated-Recurrent-Unit-based autoencoder は,様々な時系列の異常を検知し,高い性能を実現した。
- 参考スコア(独自算出の注目度): 0.8883733362171035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud platforms, under the hood, consist of a complex inter-connected stack
of hardware and software components. Each of these components can fail which
may lead to an outage. Our goal is to improve the quality of Cloud services
through early detection of such failures by analyzing resource utilization
metrics. We tested Gated-Recurrent-Unit-based autoencoder with a likelihood
function to detect anomalies in various multi-dimensional time series and
achieved high performance.
- Abstract(参考訳): クラウドプラットフォームは、内部にあり、ハードウェアとソフトウェアコンポーネントの複雑な相互接続スタックで構成されている。
これらのコンポーネントのそれぞれがフェールし、停止に繋がる可能性がある。
当社の目標は、リソース利用のメトリクスを分析して、このような障害を早期に検出することで、クラウドサービスの品質を向上させることです。
Gated-Recurrent-Unit-based autoencoder を用いて,多次元時系列の異常を検知し,高い性能を実現した。
関連論文リスト
- A Spatial-Temporal Deformable Attention based Framework for Breast
Lesion Detection in Videos [107.96514633713034]
本稿では,STNet という空間的・時間的変形可能なアテンションベースのフレームワークを提案する。
我々のSTNetは、局所的な空間的時間的特徴融合を行うために、空間的時間的変形可能なアテンションモジュールを導入している。
乳腺病変の超音波画像データセットを用いた実験により,STNetは最先端の検出性能を得ることができた。
論文 参考訳(メタデータ) (2023-09-09T07:00:10Z) - Identifying Performance Issues in Cloud Service Systems Based on Relational-Temporal Features [11.83269525626691]
クラウドシステムはパフォーマンスの問題の影響を受けやすいため、サービスレベルの合意違反や財政的損失を引き起こす可能性がある。
本稿では,メトリクスの相対的特徴と時間的特徴を併用した学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T13:41:26Z) - Alioth: A Machine Learning Based Interference-Aware Performance Monitor
for Multi-Tenancy Applications in Public Cloud [15.942285615596566]
パブリッククラウドにおけるマルチテナントは、共有リソースのコロケーション干渉を引き起こす可能性がある。
クラウドアプリケーションの性能劣化をモニタリングする新しい機械学習フレームワークAliothを提案する。
Aliothの平均絶対誤差は5.29%のオフライン、10.8%である。
論文 参考訳(メタデータ) (2023-07-18T03:34:33Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
我々はBIMS-PUと呼ばれる新しいポイント・クラウド・アップサンプリング・パイプラインを開発した。
対象のサンプリング因子を小さな因子に分解することにより,アップ/ダウンサンプリング手順をいくつかのアップ/ダウンサンプリングサブステップに分解する。
提案手法は最先端手法よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-25T13:13:37Z) - SoftPool++: An Encoder-Decoder Network for Point Cloud Completion [93.54286830844134]
本稿では,ポイントクラウド完了作業のための新しい畳み込み演算子を提案する。
提案した演算子は、最大プールやボキセル化操作を一切必要としない。
提案手法は,低解像度・高解像度の形状仕上げにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-08T15:31:36Z) - Online Self-Evolving Anomaly Detection in Cloud Computing Environments [6.480575492140354]
本稿では,クラウド信頼性保証のための自己進化型異常検出(SEAD)フレームワークを提案する。
我々のフレームワークは、新たに検証された異常記録を探索し、オンラインの異常検出を継続的に更新することによって、自己進化する。
我々の検出器は感度88.94%、平均94.60%を達成でき、実際の展開に適している。
論文 参考訳(メタデータ) (2021-11-16T05:13:38Z) - Online detection of failures generated by storage simulator [2.3859858429583665]
現代のストレージインフラストラクチャの動作をシミュレートするためのGoベースの(golang)パッケージを作成します。
パッケージの柔軟な構造により、多数のコンポーネントを持つ現実世界のストレージシステムのモデルを作成することができます。
シミュレータが生成した時系列分布の故障を検出するため,オンラインモードで動作する変更点検出アルゴリズムを改良した。
論文 参考訳(メタデータ) (2021-01-18T14:56:53Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
我々は、異なる機械学習技術を用いたDDoS異常検出のためのセキュリティ解析技術について検討する。
本稿では,システムへの入力として実際のトラフィックを扱う新しいアプローチを提案する。
提案するフレームワークの性能要因を3つの異なるテストベッドで検討・比較する。
論文 参考訳(メタデータ) (2020-01-21T06:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。