論文の概要: On the effectiveness of GAN generated cardiac MRIs for segmentation
- arxiv url: http://arxiv.org/abs/2005.09026v2
- Date: Fri, 22 May 2020 09:28:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:25:10.418333
- Title: On the effectiveness of GAN generated cardiac MRIs for segmentation
- Title(参考訳): セグメンテーションにおけるGAN生成心筋MRIの有用性について
- Authors: Youssef Skandarani, Nathan Painchaud, Pierre-Marc Jodoin, Alain
Lalande
- Abstract要約: 本稿では,心形態の潜在表現を学習するための変分オートエンコーダ(VAE)を提案する。
一方、GANは、与えられた解剖学的マップに適した現実的なMR画像を生成するために、"SPatially-Adaptive (DE)Normalization"モジュールを使用する。
合成アノテート画像を用いて訓練したCNNのセグメンテーションは,従来の手法と比較して競合する結果が得られることを示す。
- 参考スコア(独自算出の注目度): 12.59275199633534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a Variational Autoencoder (VAE) - Generative
Adversarial Networks (GAN) model that can produce highly realistic MRI together
with its pixel accurate groundtruth for the application of cine-MR image
cardiac segmentation. On one side of our model is a Variational Autoencoder
(VAE) trained to learn the latent representations of cardiac shapes. On the
other side is a GAN that uses "SPatially-Adaptive (DE)Normalization" (SPADE)
modules to generate realistic MR images tailored to a given anatomical map. At
test time, the sampling of the VAE latent space allows to generate an arbitrary
large number of cardiac shapes, which are fed to the GAN that subsequently
generates MR images whose cardiac structure fits that of the cardiac shapes. In
other words, our system can generate a large volume of realistic yet labeled
cardiac MR images. We show that segmentation with CNNs trained with our
synthetic annotated images gets competitive results compared to traditional
techniques. We also show that combining data augmentation with our
GAN-generated images lead to an improvement in the Dice score of up to 12
percent while allowing for better generalization capabilities on other
datasets.
- Abstract(参考訳): 本研究では,シネ-MR画像の心筋セグメンテーションへの応用のために,高精度なMRIと画素精度の接点を同時に生成できる可変オートエンコーダ (VAE) - GAN(Generative Adversarial Networks) モデルを提案する。
我々のモデルの一側面には、心形態の潜在表現を学習するために訓練された変分オートエンコーダ(VAE)がある。
一方、GANは、与えられた解剖学的マップに適した現実的なMR画像を生成するために、"SPADE(SPatially-Adaptive (DE)Normalization)"モジュールを使用する。
テスト時には、VOE潜伏空間のサンプリングにより任意の数の心臓形状が生成され、それがGANに供給され、その後、心臓構造が心臓形状に適合するMR画像が生成される。
言い換えれば,本システムはリアルにラベル付けされた大量の心臓MR画像を生成することができる。
合成アノテート画像を用いて訓練したCNNのセグメンテーションは,従来の手法と比較して競合する結果が得られることを示す。
また、gan生成画像とデータ拡張を組み合わせることで、diceスコアが最大12%向上し、他のデータセットの一般化能力が向上したことも示しています。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Whole Heart 3D+T Representation Learning Through Sparse 2D Cardiac MR Images [13.686473040836113]
本研究では,心臓スタック全体にわたる空間的パッチと時間的パッチの相関関係を自動的に解明する,完全自己教師型学習フレームワークを提案する。
我々は、UK BioBankから14,000のラベルなしCMRデータをトレーニングし、1000の注釈付きデータで評価する。
論文 参考訳(メタデータ) (2024-06-01T07:08:45Z) - Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model [0.0]
本研究では,高忠実かつ現実的なMRI画像スライス作成にDeep Convolutional Generative Adversarial Networks (DCGAN) を用いることを検討した。
判別器ネットワークは、生成されたスライスと実際のスライスを区別するが、ジェネレータネットワークは、現実的なMRI画像スライスを合成することを学ぶ。
ジェネレータは、敵のトレーニングアプローチを通じて、実際のMRIデータを忠実に模倣するスライスを生成する能力を向上させる。
論文 参考訳(メタデータ) (2024-04-11T05:06:51Z) - A Domain Translation Framework with an Adversarial Denoising Diffusion
Model to Generate Synthetic Datasets of Echocardiography Images [0.5999777817331317]
臨床研究に好適な心エコー画像を作成するための枠組みを提案する。
いくつかのドメイン翻訳操作において、このような生成モデルによって高品質な画像サンプルを合成できることが確認された。
論文 参考訳(メタデータ) (2024-03-07T15:58:03Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - CNN-based Cardiac Motion Extraction to Generate Deformable Geometric
Left Ventricle Myocardial Models from Cine MRI [0.0]
Cine心MR画像からLV心筋の患者特異的幾何モデルの開発のための枠組みを提案する。
我々はvoxelmorph-based convolutional neural network (cnn) を用いて、心周期の次のフレームにエンドダイアゾールフレームの等表面メッシュとボリュームメッシュを伝搬する。
論文 参考訳(メタデータ) (2021-03-30T21:34:29Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
本研究では,高画質,多彩で現実的な拡散重み付き磁気共鳴画像が深部生成モデルを用いて合成可能であることを示す。
Introspective Variational AutoencoderとStyle-Based GANの2つのネットワークを医療分野におけるデータ拡張の資格として提示する。
論文 参考訳(メタデータ) (2020-06-24T18:00:01Z) - 4D Semantic Cardiac Magnetic Resonance Image Synthesis on XCAT
Anatomical Model [0.7959841510571622]
心臓磁気共鳴画像(CMR)を3D+tラベルで合成するハイブリッド制御可能な画像生成法を提案する。
本手法は, 解剖学的根拠として, メカニスティック4D eXtended CArdiac Torso (XCAT) 心モデルを用いている。
本研究では、条件付き画像合成にSPADE(State-of-the-the-the-art SPatially Adaptive De-normalization)技術を用いる。
論文 参考訳(メタデータ) (2020-02-17T17:25:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。