On Intrinsic Dataset Properties for Adversarial Machine Learning
- URL: http://arxiv.org/abs/2005.09170v1
- Date: Tue, 19 May 2020 02:24:14 GMT
- Title: On Intrinsic Dataset Properties for Adversarial Machine Learning
- Authors: Jeffrey Z. Pan, Nicholas Zufelt
- Abstract summary: We study the effect of intrinsic dataset properties on the performance of adversarial attack and defense methods.
We find that input size and image contrast play key roles in attack and defense success.
- Score: 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have played a key role in a wide range of machine
learning applications. However, DNN classifiers are vulnerable to
human-imperceptible adversarial perturbations, which can cause them to
misclassify inputs with high confidence. Thus, creating robust DNNs which can
defend against malicious examples is critical in applications where security
plays a major role. In this paper, we study the effect of intrinsic dataset
properties on the performance of adversarial attack and defense methods,
testing on five popular image classification datasets - MNIST, Fashion-MNIST,
CIFAR10/CIFAR100, and ImageNet. We find that input size and image contrast play
key roles in attack and defense success. Our discoveries highlight that dataset
design and data preprocessing steps are important to boost the adversarial
robustness of DNNs. To our best knowledge, this is the first comprehensive work
that studies the effect of intrinsic dataset properties on adversarial machine
learning.
Related papers
- Impact of White-Box Adversarial Attacks on Convolutional Neural Networks [0.6138671548064356]
We investigate the susceptibility of Convolutional Neural Networks (CNNs) to white-box adversarial attacks.
Our study provides insights into the robustness of CNNs against adversarial threats.
arXiv Detail & Related papers (2024-10-02T21:24:08Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
We certify Graph Neural Networks (GNNs) against poisoning attacks, including backdoors, targeting the node features of a given graph.
Our framework provides fundamental insights into the role of graph structure and its connectivity on the worst-case behavior of convolution-based and PageRank-based GNNs.
arXiv Detail & Related papers (2024-07-15T16:12:51Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
Adversarial Converging Time Score (ACTS) measures the converging time as an adversarial robustness metric.
We validate the effectiveness and generalization of the proposed ACTS metric against different adversarial attacks on the large-scale ImageNet dataset.
arXiv Detail & Related papers (2023-10-10T09:39:38Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
Deep neural networks (DNNs) have gained prominence in various applications, such as classification, recognition, and prediction.
A fundamental attribute of traditional DNNs is their vulnerability to modifications in input data, which has resulted in the investigation of adversarial attacks.
This study aims to challenge the efficacy and generalization of contemporary defense mechanisms against adversarial attacks.
arXiv Detail & Related papers (2023-08-12T05:21:34Z) - Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural
Networks with Neuromorphic Data [15.084703823643311]
spiking neural networks (SNNs) offer enhanced energy efficiency and biologically plausible data processing capabilities.
This paper delves into backdoor attacks in SNNs using neuromorphic datasets and diverse triggers.
We present various attack strategies, achieving an attack success rate of up to 100% while maintaining a negligible impact on clean accuracy.
arXiv Detail & Related papers (2023-02-13T11:34:17Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.