Matching Questions and Answers in Dialogues from Online Forums
- URL: http://arxiv.org/abs/2005.09276v2
- Date: Mon, 3 Aug 2020 02:44:07 GMT
- Title: Matching Questions and Answers in Dialogues from Online Forums
- Authors: Qi Jia, Mengxue Zhang, Shengyao Zhang, Kenny Q. Zhu
- Abstract summary: Matching question-answer relations between two turns in conversations is not only the first step in analyzing dialogue structures, but also valuable for training dialogue systems.
This paper presents a QA matching model considering both distance information and dialogue history by two simultaneous attention mechanisms called mutual attention.
- Score: 12.64602629459043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matching question-answer relations between two turns in conversations is not
only the first step in analyzing dialogue structures, but also valuable for
training dialogue systems. This paper presents a QA matching model considering
both distance information and dialogue history by two simultaneous attention
mechanisms called mutual attention. Given scores computed by the trained model
between each non-question turn with its candidate questions, a greedy matching
strategy is used for final predictions. Because existing dialogue datasets such
as the Ubuntu dataset are not suitable for the QA matching task, we further
create a dataset with 1,000 labeled dialogues and demonstrate that our proposed
model outperforms the state-of-the-art and other strong baselines, particularly
for matching long-distance QA pairs.
Related papers
- Automated Speaking Assessment of Conversation Tests with Novel Graph-based Modeling on Spoken Response Coherence [11.217656140423207]
ASAC aims to evaluate the overall speaking proficiency of an L2 speaker in a setting where an interlocutor interacts with one or more candidates.
We propose a hierarchical graph model that aptly incorporates both broad inter-response interactions and nuanced semantic information.
Extensive experimental results on the NICT-JLE benchmark dataset suggest that our proposed modeling approach can yield considerable improvements in prediction accuracy.
arXiv Detail & Related papers (2024-09-11T07:24:07Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
Dialogue Topic (DTS) plays an essential role in a variety of dialogue modeling tasks.
We propose a novel unsupervised DTS framework, which learns topic-aware utterance representations from unlabeled dialogue data.
arXiv Detail & Related papers (2023-05-04T11:35:23Z) - DialogQAE: N-to-N Question Answer Pair Extraction from Customer Service
Chatlog [34.69426306212259]
We propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances.
We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets.
arXiv Detail & Related papers (2022-12-14T09:05:14Z) - CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog
Evaluation [75.60156479374416]
CGoDial is a new challenging and comprehensive Chinese benchmark for Goal-oriented Dialog evaluation.
It contains 96,763 dialog sessions and 574,949 dialog turns totally, covering three datasets with different knowledge sources.
To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing.
arXiv Detail & Related papers (2022-11-21T16:21:41Z) - Dial2vec: Self-Guided Contrastive Learning of Unsupervised Dialogue
Embeddings [41.79937481022846]
We introduce the task of learning unsupervised dialogue embeddings.
Trivial approaches such as combining pre-trained word or sentence embeddings and encoding through pre-trained language models have been shown to be feasible.
We propose a self-guided contrastive learning approach named dial2vec.
arXiv Detail & Related papers (2022-10-27T11:14:06Z) - CREAD: Combined Resolution of Ellipses and Anaphora in Dialogues [14.66729951223073]
Anaphora and ellipses are two common phenomena in dialogues.
Traditionally, anaphora is resolved by coreference resolution and ellipses by query rewrite.
We propose a novel joint learning framework of modeling coreference resolution and query rewriting.
arXiv Detail & Related papers (2021-05-20T17:17:26Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.