論文の概要: An examination of applicability of face recognition sensors in public
facilities
- arxiv url: http://arxiv.org/abs/2005.09285v1
- Date: Tue, 19 May 2020 08:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 08:23:43.766625
- Title: An examination of applicability of face recognition sensors in public
facilities
- Title(参考訳): 公共施設における顔認識センサの適用性の検討
- Authors: Takuji Takemoto, Takashi Ota, Hiroko Oe
- Abstract要約: このプロジェクトは地元のコンソーシアムが地元の技術系中小企業、ビジネス組織、地方大学の協力を得て実施した。
プロジェクトのために9つのOMRONセンサーが提供され、公共施設の5箇所に3ヶ月間設置された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This study aimed to explore the usability and applicability of face
recognition sensors in public spaces to collect customer footfall data, which
could then be analysed and evaluated for facility design and planning. Nine
OMRON sensors were provided for the project and installed at five locations in
a public facility for three months. The project was carried out by a local
consortium with the cooperation of local technology-based Small Medium-sized
Enterprises (SMEs), business organisations, and a local university. Collected
data were analysed to develop a report with diagrams, and reveal issues and
potential for practical application in the future.
- Abstract(参考訳): 本研究の目的は、公共空間における顔認識センサーのユーザビリティと適用性を調べ、顧客の足場データを収集し、施設設計と計画のために分析・評価することであった。
プロジェクトのために9つのOMRONセンサーが提供され、公共施設の5箇所に3ヶ月間設置された。
このプロジェクトは地元のコンソーシアムによって実施され、地元技術拠点の中小企業、ビジネス組織、地元の大学が協力した。
収集したデータを分析して,ダイアグラムを用いたレポートを作成し,将来的な実用化に向けた課題と可能性を明らかにする。
関連論文リスト
- Identification of crowds using mobile crowd detection (MCS) and visualization with the DBSCAN algorithm for a Smart Campus environment [0.0]
本稿では,モバイル・クラウド・センシング(MCS, Mobile Crowd Sensing)と可視化アルゴリズムを用いて,大学構内における群集検出の実現可能性について検討する。
予備的な結果から, システムは有効であり, 混雑による事故防止や公共空間の管理に役立つ可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-28T22:35:04Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Indoor Location Fingerprinting Privacy: A Comprehensive Survey [0.09831489366502298]
屋内測位システム(IPS)の広汎な統合は、位置情報サービス(LBS)の普及に繋がる。
屋内位置指紋認証は、ユーザデバイスから多様な信号指紋を使用し、ロケーションサービスプロバイダ(LSP)による正確な位置識別を可能にする
様々なドメインにまたがる幅広い応用にもかかわらず、屋内位置フィンガープリントは、LSPと潜在的な敵の両方が本質的にこの機密情報にアクセスでき、ユーザーのプライバシーを損なうため、顕著なプライバシーリスクをもたらす。
論文 参考訳(メタデータ) (2024-04-10T21:02:58Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - Location retrieval using visible landmarks based qualitative place
signatures [0.7119463843130092]
定位位置シグネチャ(QPS)を用いた位置・場所を記述した定位位置探索法を提案する。
空間を個々のシグネチャを付加した場所セルに分割した後,その質的観察に基づいて,視聴者の可能な位置を効率的に同定する粗い位置探索法を提案する。
論文 参考訳(メタデータ) (2022-07-26T13:57:49Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
人中心の観点から、AIが社会に与える影響を探求する上で重要なトピックとなっている。
市民科学におけるこれまでの研究は、AIを使って研究に大衆を巻き込む方法を特定してきた。
本稿では,コミュニティ市民科学にAIを適用する上での課題について論じる。
論文 参考訳(メタデータ) (2021-10-05T12:51:11Z) - Seeing poverty from space, how much can it be tuned? [0.0]
本研究では, 組織的関係のない個人が, 特定の農業生態環境において, 地域貧困水準の予測の改善に寄与できることを実証した。
このアプローチは、衛星画像と「地上真実」データを現場から処理する深層学習による貧困のマッピングに関するいくつかの先駆的な取り組みに基づいている。
このプロジェクトの主な目的は、市民科学者、学生、組織が他の分野の手法を再現できるように、無償で利用可能なリソースを使用することで、コストを可能な限り低く抑えることであった。
論文 参考訳(メタデータ) (2021-07-30T15:23:54Z) - A Generalized Framework for Measuring Pedestrian Accessibility around
the World Using Open Data [0.0]
本研究では,オープンかつ一貫したデータを用いて,都市の歩行者アクセシビリティ指標を構築するためのオープンソースのソフトウェアフレームワークを開発する。
ソフトウェアは、オープンリポジトリで再利用するために公開されています。
論文 参考訳(メタデータ) (2021-05-18T20:22:58Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
包括的調査を行い、深層学習を用いた局所化とマッピングのための新しい分類法を提案する。
オードメトリ推定、マッピング、グローバルローカライゼーション、同時ローカライゼーション、マッピングなど、幅広いトピックがカバーされている。
この研究がロボティクス、コンピュータビジョン、機械学習コミュニティの新たな成果を結び付けることを願っている。
論文 参考訳(メタデータ) (2020-06-22T19:01:21Z) - Improving time use measurement with personal big data collection -- the
experience of the European Big Data Hackathon 2019 [62.997667081978825]
この記事では、Eurostatが主催するNTTS(New Techniques and Technologies for Statistics)カンファレンスのサテライトイベントであるEuropean Big Data Hackathon 2019で、i-Logの経験を評価します。
i-Logは、スマートフォンの内部センサーから個人用ビッグデータをキャプチャして、時間的使用量を測定するシステムである。
論文 参考訳(メタデータ) (2020-04-24T18:40:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。