論文の概要: On Restricting Real-Valued Genotypes in Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2005.09380v1
- Date: Tue, 19 May 2020 11:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 13:30:26.109874
- Title: On Restricting Real-Valued Genotypes in Evolutionary Algorithms
- Title(参考訳): 進化的アルゴリズムにおける実数値遺伝子型制限について
- Authors: J{\o}rgen Nordmoen, T{\o}nnes Frostad Nygaard, Eivind Samuelsen and
Kyrre Glette
- Abstract要約: 本稿では、実際のゲノムのパラメータの制限と、これらの値を適切に制限する最も有望な方法の分析について述べる。
提案手法は進化アルゴリズムの実践者による最小限の介入が必要であり、変動演算子の繰り返し適用下では良好に振る舞う。
- 参考スコア(独自算出の注目度): 1.290382979353427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-valued genotypes together with the variation operators, mutation and
crossover, constitute some of the fundamental building blocks of Evolutionary
Algorithms. Real-valued genotypes are utilized in a broad range of contexts,
from weights in Artificial Neural Networks to parameters in robot control
systems. Shared between most uses of real-valued genomes is the need for
limiting the range of individual parameters to allowable bounds. In this paper
we will illustrate the challenge of limiting the parameters of real-valued
genomes and analyse the most promising method to properly limit these values.
We utilize both empirical as well as benchmark examples to demonstrate the
utility of the proposed method and through a literature review show how the
insight of this paper could impact other research within the field. The
proposed method requires minimal intervention from Evolutionary Algorithm
practitioners and behaves well under repeated application of variation
operators, leading to better theoretical properties as well as significant
differences in well-known benchmarks.
- Abstract(参考訳): 実数値ジェノタイプと変異演算子、突然変異および交叉は、進化的アルゴリズムの基本的な構成要素を構成する。
実数値ジェノタイプは、ニューラルネットワークの重みからロボット制御システムのパラメータまで、幅広い文脈で利用されている。
実数値ゲノムのほとんどの利用間で共有されるのは、個々のパラメータの範囲を許容範囲に制限する必要性である。
本稿では、実数値ゲノムのパラメータの制限と、これらの値を適切に制限する最も有望な方法の分析について述べる。
実験とベンチマークの両例を用いて提案手法の有効性を実証し,本論文の知見がフィールド内の他の研究にどのように影響するかを文献レビューを通じて示す。
提案手法は,進化的アルゴリズム実践者からの最小限の介入を必要とし,変分演算子の繰り返し適用下ではよく振る舞う。
関連論文リスト
- Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
textscLanguage prefix ftextscIne-tuning for textscGentextscOmes。
DNA基盤モデルとは異なり、textscLingoは自然言語基盤モデルの文脈的手がかりを戦略的に活用している。
textscLingoはさらに、適応的なランクサンプリング方法により、下流の細調整タスクを数多く許容する。
論文 参考訳(メタデータ) (2024-02-12T21:40:45Z) - DNA Sequence Classification with Compressors [0.0]
本研究は,DNA配列解析に適した圧縮機を用いたパラメータフリー分類法を新たに導入する。
この手法は、精度の観点から現在の最先端と整合するだけでなく、従来の機械学習手法よりもリソース効率の良い代替手段を提供する。
論文 参考訳(メタデータ) (2024-01-25T09:17:19Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
本稿では,不必要な変数や乱れに条件付き不変な表現を学習するために,ドメインの可変性を活用する新しい手法を提案する。
単細胞ゲノム学におけるデータ統合など,生物の課題に対して本手法を適用した。
具体的には、提案手法は、対象のタスクと無関係なデータバイアスや興味の因果的説明から生物学的信号を解き放つのに役立つ。
論文 参考訳(メタデータ) (2023-07-02T12:52:41Z) - Neural-Network-Directed Genetic Programmer for Discovery of Governing
Equations [0.0]
faiGPは、文法にエンコードされた関数代数の性質を利用するように設計されている。
我々は, トランスクリプトームの研究から適応した多様性指標を含む, 各種正則化剤の影響を定量化する。
論文 参考訳(メタデータ) (2022-03-15T21:28:05Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
我々は、GeneBERTと呼ばれる、多モードかつ自己管理的な方法でゲノムデータを事前学習するための、単純かつ効果的なアプローチを提案する。
我々はATAC-seqデータセットで1700万のゲノム配列でモデルを事前訓練する。
論文 参考訳(メタデータ) (2021-10-11T12:48:44Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
generative adversarial network (gans) は、非凹型ミニマックス最適化問題を訓練するために用いられる。
ある理論は、グローバル最適解に対する勾配降下 (gd) の重要性を示している。
ニューラルネットワークジェネレータと線形判別器を併用した多層GANにおいて、GDAは、基礎となる非凹面min-max問題の大域的なサドル点に収束することを示す。
論文 参考訳(メタデータ) (2021-04-12T16:23:37Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブルのアイデアを組み合わせた高次元二項分類問題に対する新しいアプローチを提案する。
がん,多発性硬化症,乾皮症などの共通疾患を含むいくつかの医学的データセットを用いて,バイオマーカーの予測精度と同定の点で,本手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
本稿では、進化するネットワークを隠されたニューロンの数に基づいて種に分類する神経進化の種分化原理を提案する。
提案された種分化原理は、種および生態系全体における多様性の促進と保存を目的として設計されたいくつかの技術で採用されている。
論文 参考訳(メタデータ) (2020-10-11T06:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。