MaskFace: multi-task face and landmark detector
- URL: http://arxiv.org/abs/2005.09412v1
- Date: Tue, 19 May 2020 13:09:28 GMT
- Title: MaskFace: multi-task face and landmark detector
- Authors: Dmitry Yashunin, Tamir Baydasov, Roman Vlasov
- Abstract summary: We present a highly accurate model for face and landmark detection.
The method, called MaskFace, extends previous face detection approaches by adding a keypoint prediction head.
We evaluate MaskFace's performance on a face detection task on the AFW, PASCAL face, FDDB, WIDER FACE datasets and a landmark localization task on the AFLW, 300W datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently in the domain of facial analysis single task approaches for face
detection and landmark localization dominate. In this paper we draw attention
to multi-task models solving both tasks simultaneously. We present a highly
accurate model for face and landmark detection. The method, called MaskFace,
extends previous face detection approaches by adding a keypoint prediction
head. The new keypoint head adopts ideas of Mask R-CNN by extracting facial
features with a RoIAlign layer. The keypoint head adds small computational
overhead in the case of few faces in the image while improving the accuracy
dramatically. We evaluate MaskFace's performance on a face detection task on
the AFW, PASCAL face, FDDB, WIDER FACE datasets and a landmark localization
task on the AFLW, 300W datasets. For both tasks MaskFace achieves
state-of-the-art results outperforming many of single-task and multi-task
models.
Related papers
- Task-adaptive Q-Face [75.15668556061772]
We propose a novel task-adaptive multi-task face analysis method named as Q-Face.
Q-Face simultaneously performs multiple face analysis tasks with a unified model.
Our method achieves state-of-the-art performance on face expression recognition, action unit detection, face attribute analysis, age estimation, and face pose estimation.
arXiv Detail & Related papers (2024-05-15T03:13:11Z) - FaceXFormer: A Unified Transformer for Facial Analysis [59.94066615853198]
FaceXformer is an end-to-end unified transformer model for a range of facial analysis tasks.
Our model effectively handles images "in-the-wild," demonstrating its robustness and generalizability across eight different tasks.
arXiv Detail & Related papers (2024-03-19T17:58:04Z) - Toward High Quality Facial Representation Learning [58.873356953627614]
We propose a self-supervised pre-training framework, called Mask Contrastive Face (MCF)
We use feature map of a pre-trained visual backbone as a supervision item and use a partially pre-trained decoder for mask image modeling.
Our model achieves 0.932 NME_diag$ for AFLW-19 face alignment and 93.96 F1 score for LaPa face parsing.
arXiv Detail & Related papers (2023-09-07T09:11:49Z) - SwinFace: A Multi-task Transformer for Face Recognition, Expression
Recognition, Age Estimation and Attribute Estimation [60.94239810407917]
This paper presents a multi-purpose algorithm for simultaneous face recognition, facial expression recognition, age estimation, and face attribute estimation based on a single Swin Transformer.
To address the conflicts among multiple tasks, a Multi-Level Channel Attention (MLCA) module is integrated into each task-specific analysis.
Experiments show that the proposed model has a better understanding of the face and achieves excellent performance for all tasks.
arXiv Detail & Related papers (2023-08-22T15:38:39Z) - DPPMask: Masked Image Modeling with Determinantal Point Processes [49.65141962357528]
Masked Image Modeling (MIM) has achieved impressive representative performance with the aim of reconstructing randomly masked images.
We show that uniformly random masking widely used in previous works unavoidably loses some key objects and changes original semantic information.
To address this issue, we augment MIM with a new masking strategy namely the DPPMask.
Our method is simple yet effective and requires no extra learnable parameters when implemented within various frameworks.
arXiv Detail & Related papers (2023-03-13T13:40:39Z) - FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face
Extraction [3.8502825594372703]
Occlusions often occur in face images in the wild, troubling face-related tasks such as landmark detection, 3D reconstruction, and face recognition.
This paper proposes a novel face segmentation dataset with manually labeled face occlusions from the CelebA-HQ and the internet.
We trained a straightforward face segmentation model but obtained SOTA performance, convincingly demonstrating the effectiveness of the proposed dataset.
arXiv Detail & Related papers (2022-01-20T19:44:18Z) - MaskMTL: Attribute prediction in masked facial images with deep
multitask learning [9.91045425400833]
This paper presents a deep Multi-Task Learning (MTL) approach to jointly estimate various heterogeneous attributes from a single masked facial image.
The proposed approach supersedes in performance to other competing techniques.
arXiv Detail & Related papers (2022-01-09T13:03:29Z) - FocusFace: Multi-task Contrastive Learning for Masked Face Recognition [4.420321822469077]
SARS-CoV-2 has presented direct and indirect challenges to the scientific community.
Face recognition methods struggle to perform identity verification with similar accuracy on masked and unmasked individuals.
We propose FocusFace, a multi-task architecture that uses contrastive learning to be able to accurately perform masked face recognition.
arXiv Detail & Related papers (2021-10-28T08:17:12Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) is a tool to generate masked faces from unmasked faces automatically.
The recognition accuracy of SOTA models declines 5%-16% on MLFW database compared with the accuracy on the original images.
arXiv Detail & Related papers (2021-09-13T09:30:10Z) - Boosting Masked Face Recognition with Multi-Task ArcFace [0.973681576519524]
Given the global health crisis caused by COVID-19, mouth and nose-covering masks have become an essential everyday-clothing-accessory.
This measure has put the state-of-the-art face recognition models on the ropes since they have not been designed to work with masked faces.
A full training pipeline is presented based on the ArcFace work, with several modifications for the backbone and the loss function.
arXiv Detail & Related papers (2021-04-20T10:12:04Z) - Towards NIR-VIS Masked Face Recognition [47.00916333095693]
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition.
We propose a novel training method to maximize the mutual information shared by the face representation of two domains.
In addition, a 3D face reconstruction based approach is employed to synthesize masked face from the existing NIR image.
arXiv Detail & Related papers (2021-04-14T10:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.