MLFW: A Database for Face Recognition on Masked Faces
- URL: http://arxiv.org/abs/2109.05804v2
- Date: Wed, 15 Sep 2021 11:20:46 GMT
- Title: MLFW: A Database for Face Recognition on Masked Faces
- Authors: Chengrui Wang, Han Fang, Yaoyao Zhong, Weihong Deng
- Abstract summary: Masked LFW (MLFW) is a tool to generate masked faces from unmasked faces automatically.
The recognition accuracy of SOTA models declines 5%-16% on MLFW database compared with the accuracy on the original images.
- Score: 56.441078419992046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As more and more people begin to wear masks due to current COVID-19 pandemic,
existing face recognition systems may encounter severe performance degradation
when recognizing masked faces. To figure out the impact of masks on face
recognition model, we build a simple but effective tool to generate masked
faces from unmasked faces automatically, and construct a new database called
Masked LFW (MLFW) based on Cross-Age LFW (CALFW) database. The mask on the
masked face generated by our method has good visual consistency with the
original face. Moreover, we collect various mask templates, covering most of
the common styles appeared in the daily life, to achieve diverse generation
effects. Considering realistic scenarios, we design three kinds of combinations
of face pairs. The recognition accuracy of SOTA models declines 5%-16% on MLFW
database compared with the accuracy on the original images. MLFW database can
be viewed and downloaded at \url{http://whdeng.cn/mlfw}.
Related papers
- Face Mask Removal with Region-attentive Face Inpainting [0.7433327915285965]
We propose a generative face inpainting method to recover/reconstruct the masked part of a face.
Our proposed method includes a Multi-scale Channel-Spatial Attention Module (M-CSAM) to mitigate the spatial information loss.
We synthesize our own Masked-Faces dataset from the CelebA dataset by incorporating five different types of face masks.
arXiv Detail & Related papers (2024-09-10T20:10:11Z) - Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
Current general face recognition system suffers from serious performance degradation when encountering occluded scenes.
This paper proposes a Multi-task gEnerative mask dEcoupling face Recognition (MEER) network to jointly handle these two tasks.
We first present a novel mask decoupling module to disentangle mask and identity information, which makes the network obtain purer identity features from visible facial components.
arXiv Detail & Related papers (2023-11-20T03:23:03Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
We propose a novel framework FaceMAE, where the face privacy and recognition performance are considered simultaneously.
randomly masked face images are used to train the reconstruction module in FaceMAE.
We also perform sufficient privacy-preserving face recognition on several public face datasets.
arXiv Detail & Related papers (2022-05-23T07:19:42Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
Masks affect the performance of previous face recognition systems.
We propose a mask-invariant face recognition solution (MaskInv)
In addition to the distilled knowledge, the student network benefits from additional guidance by margin-based identity classification loss.
arXiv Detail & Related papers (2021-12-10T16:19:28Z) - Adversarial Mask: Real-World Adversarial Attack Against Face Recognition
Models [66.07662074148142]
We propose a physical adversarial universal perturbation (UAP) against state-of-the-art deep learning-based facial recognition models.
In our experiments, we examined the transferability of our adversarial mask to a wide range of deep learning models and datasets.
We validated our adversarial mask effectiveness in real-world experiments by printing the adversarial pattern on a fabric medical face mask.
arXiv Detail & Related papers (2021-11-21T08:13:21Z) - A realistic approach to generate masked faces applied on two novel
masked face recognition data sets [14.130698536174767]
We propose a method for enhancing data sets containing faces without masks by creating synthetic masks and overlaying them on faces in the original images.
We employ our method to generate a number of 445,446 (90%) samples of masks for the CASIA-WebFace data set and 196,254 (96.8%) masks for the CelebA data set.
We show that our method produces significantly more realistic training examples of masks overlaid on faces by asking volunteers to qualitatively compare it to other methods or data sets.
arXiv Detail & Related papers (2021-09-03T22:33:55Z) - Indian Masked Faces in the Wild Dataset [86.79402670904338]
We present a novel textbfIndian Masked Faces in the Wild (IMFW) dataset which contains images with variations in pose, illumination, resolution, and the variety of masks worn by the subjects.
We have also benchmarked the performance of existing face recognition models on the proposed IMFW dataset.
arXiv Detail & Related papers (2021-06-17T17:23:54Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - A 3D model-based approach for fitting masks to faces in the wild [9.958467179573235]
We present a 3D model-based approach called WearMask3D for augmenting face images of various poses to the masked face counterparts.
Our method proceeds by first fitting a 3D morphable model on the input image, second overlaying the mask surface onto the face model and warping the respective mask texture, and last projecting the 3D mask back to 2D.
Experimental results demonstrate WearMask3D produces more realistic masked images, and utilizing these images for training leads to improved recognition accuracy of masked faces.
arXiv Detail & Related papers (2021-03-01T06:50:18Z) - MaskedFace-Net -- A Dataset of Correctly/Incorrectly Masked Face Images
in the Context of COVID-19 [2.7528170226206443]
The wearing of the face masks appears as a solution for limiting the spread of COVID-19.
To perform this task, a large dataset of masked faces is necessary for training deep learning models towards detecting people wearing masks and those not wearing masks.
Some large datasets of masked faces are available in the literature. However, at the moment, there are no available large dataset of masked face images that permits to check if detected masked faces are correctly worn or not.
arXiv Detail & Related papers (2020-08-18T16:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.