Built Infrastructure Monitoring and Inspection Using UAVs and
Vision-based Algorithms
- URL: http://arxiv.org/abs/2005.09486v1
- Date: Tue, 19 May 2020 14:37:48 GMT
- Title: Built Infrastructure Monitoring and Inspection Using UAVs and
Vision-based Algorithms
- Authors: Khai Ky Ly and Manh Duong Phung
- Abstract summary: This study presents an inspecting system using real-time control unmanned aerial vehicles (UAVs) to investigate structural surfaces.
The system operates under favourable weather conditions to inspect a target structure, which is the Wentworth light rail base structure in this study.
- Score: 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents an inspecting system using real-time control unmanned
aerial vehicles (UAVs) to investigate structural surfaces. The system operates
under favourable weather conditions to inspect a target structure, which is the
Wentworth light rail base structure in this study. The system includes a drone,
a GoPro HERO4 camera, a controller and a mobile phone. The drone takes off the
ground manually in the testing field to collect the data requiring for later
analysis. The images are taken through HERO 4 camera and then transferred in
real time to the remote processing unit such as a ground control station by the
wireless connection established by a Wi-Fi router. An image processing method
has been proposed to detect defects or damages such as cracks. The method based
on intensity histogram algorithms to exploit the pixel group related to the
crack contained in the low intensity interval. Experiments, simulation and
comparisons have been conducted to evaluate the performance and validity of the
proposed system.
Related papers
- Multi-Stage Fusion Architecture for Small-Drone Localization and Identification Using Passive RF and EO Imagery: A Case Study [0.1872664641238533]
This work develops a multi-stage fusion architecture using passive radio frequency (RF) and electro-optic (EO) imagery data.
Supervised deep learning based techniques and unsupervised foreground/background separation techniques are explored to cope with challenging environments.
The proposed fusion architecture is tested and the tracking and performance is quantified over the range.
arXiv Detail & Related papers (2024-03-30T22:53:28Z) - Design and Flight Demonstration of a Quadrotor for Urban Mapping and Target Tracking Research [0.04712282770819683]
This paper describes the hardware design and flight demonstration of a small quadrotor with imaging sensors for urban mapping, hazard avoidance, and target tracking research.
The vehicle is equipped with five cameras, including two pairs of fisheye stereo cameras that enable a nearly omnidirectional view and a two-axis gimbaled camera.
An onboard NVIDIA Jetson Orin Nano computer running the Robot Operating System software is used for data collection.
arXiv Detail & Related papers (2024-02-20T18:06:00Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - Drone Detection and Tracking in Real-Time by Fusion of Different Sensing
Modalities [66.4525391417921]
We design and evaluate a multi-sensor drone detection system.
Our solution integrates a fish-eye camera as well to monitor a wider part of the sky and steer the other cameras towards objects of interest.
The thermal camera is shown to be a feasible solution as good as the video camera, even if the camera employed here has a lower resolution.
arXiv Detail & Related papers (2022-07-05T10:00:58Z) - Comparison of Object Detection Algorithms Using Video and Thermal Images
Collected from a UAS Platform: An Application of Drones in Traffic Management [2.9932638148627104]
This study explores real-time vehicle detection algorithms on both visual and infrared cameras.
Red Green Blue (RGB) videos and thermal images were collected from a UAS platform along highways in the Tampa, Florida, area.
arXiv Detail & Related papers (2021-09-27T16:57:09Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Vision-based Drone Flocking in Outdoor Environments [9.184987303791292]
This letter proposes a vision-based detection and tracking algorithm for drone swarms.
We employ a convolutional neural network to detect and localize nearby agents onboard the quadcopters in real-time.
We show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.
arXiv Detail & Related papers (2020-12-02T14:44:40Z) - Image Generation for Efficient Neural Network Training in Autonomous
Drone Racing [15.114944019221456]
In autonomous drone racing, one must accomplish this task by flying fully autonomously in an unknown environment.
Traditional object detection algorithms based on colour or geometry tend to fail.
In this work, a semi-synthetic dataset generation method is proposed, using a combination of real background images and randomised 3D renders of the gates.
arXiv Detail & Related papers (2020-08-06T12:07:36Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.