Design and Flight Demonstration of a Quadrotor for Urban Mapping and Target Tracking Research
- URL: http://arxiv.org/abs/2402.13195v2
- Date: Fri, 15 Mar 2024 18:15:18 GMT
- Title: Design and Flight Demonstration of a Quadrotor for Urban Mapping and Target Tracking Research
- Authors: Collin Hague, Nick Kakavitsas, Jincheng Zhang, Chris Beam, Andrew Willis, Artur Wolek,
- Abstract summary: This paper describes the hardware design and flight demonstration of a small quadrotor with imaging sensors for urban mapping, hazard avoidance, and target tracking research.
The vehicle is equipped with five cameras, including two pairs of fisheye stereo cameras that enable a nearly omnidirectional view and a two-axis gimbaled camera.
An onboard NVIDIA Jetson Orin Nano computer running the Robot Operating System software is used for data collection.
- Score: 0.04712282770819683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the hardware design and flight demonstration of a small quadrotor with imaging sensors for urban mapping, hazard avoidance, and target tracking research. The vehicle is equipped with five cameras, including two pairs of fisheye stereo cameras that enable a nearly omnidirectional view and a two-axis gimbaled camera. An onboard NVIDIA Jetson Orin Nano computer running the Robot Operating System software is used for data collection. An autonomous tracking behavior was implemented to coordinate the motion of the quadrotor and gimbaled camera to track a moving GPS coordinate. The data collection system was demonstrated through a flight test that tracked a moving GPS-tagged vehicle through a series of roads and parking lots. A map of the environment was reconstructed from the collected images using the Direct Sparse Odometry (DSO) algorithm. The performance of the quadrotor was also characterized by acoustic noise, communication range, battery voltage in hover, and maximum speed tests.
Related papers
- PathFinder: Attention-Driven Dynamic Non-Line-of-Sight Tracking with a Mobile Robot [3.387892563308912]
We introduce a novel approach to process a sequence of dynamic successive frames in a line-of-sight (LOS) video using an attention-based neural network.
We validate the approach on in-the-wild scenes using a drone for video capture, thus demonstrating low-cost NLOS imaging in dynamic capture environments.
arXiv Detail & Related papers (2024-04-07T17:31:53Z) - Drone Detection and Tracking in Real-Time by Fusion of Different Sensing
Modalities [66.4525391417921]
We design and evaluate a multi-sensor drone detection system.
Our solution integrates a fish-eye camera as well to monitor a wider part of the sky and steer the other cameras towards objects of interest.
The thermal camera is shown to be a feasible solution as good as the video camera, even if the camera employed here has a lower resolution.
arXiv Detail & Related papers (2022-07-05T10:00:58Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment [38.24705460170415]
We propose a new dataset, named CRUW, with a systematic annotator and performance evaluation system.
CRUW aims to classify and localize the objects in 3D purely from radar's radio frequency (RF) images.
To the best of our knowledge, CRUW is the first public large-scale dataset with a systematic annotation and evaluation system.
arXiv Detail & Related papers (2021-05-11T17:13:45Z) - Agile Reactive Navigation for A Non-Holonomic Mobile Robot Using A Pixel
Processor Array [22.789108850681146]
This paper presents an agile reactive navigation strategy for driving a non-holonomic ground vehicle around a preset course of gates in a cluttered environment using a low-cost processor array sensor.
We demonstrate a small ground vehicle running through or avoiding multiple gates at high speed using minimal computational resources.
arXiv Detail & Related papers (2020-09-27T09:11:31Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - Built Infrastructure Monitoring and Inspection Using UAVs and
Vision-based Algorithms [2.0305676256390934]
This study presents an inspecting system using real-time control unmanned aerial vehicles (UAVs) to investigate structural surfaces.
The system operates under favourable weather conditions to inspect a target structure, which is the Wentworth light rail base structure in this study.
arXiv Detail & Related papers (2020-05-19T14:37:48Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-its-kind dataset featuring 10 different LiDAR sensors.
LIBRE will contribute to the research community to provide a means for a fair comparison of currently available LiDARs.
It will also facilitate the improvement of existing self-driving vehicles and robotics-related software.
arXiv Detail & Related papers (2020-03-13T06:17:39Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.