論文の概要: Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
- arxiv url: http://arxiv.org/abs/2005.09830v1
- Date: Wed, 20 May 2020 03:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 05:41:18.364507
- Title: Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
- Title(参考訳): 自動運転におけるLiDARポイントクラウドのためのディープラーニング: レビュー
- Authors: Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Dongpu Cao, Jonathan Li,
and Michael A. Chapman
- Abstract要約: 我々は、LiDARポイントクラウドに適用された既存の魅力的なディープラーニングアーキテクチャを体系的にレビューする。
この調査では、過去5年間に140以上の重要なコントリビューションがまとめられている。
- 参考スコア(独自算出の注目度): 33.56857661598032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the advancement of deep learning in discriminative feature learning
from 3D LiDAR data has led to rapid development in the field of autonomous
driving. However, automated processing uneven, unstructured, noisy, and massive
3D point clouds is a challenging and tedious task. In this paper, we provide a
systematic review of existing compelling deep learning architectures applied in
LiDAR point clouds, detailing for specific tasks in autonomous driving such as
segmentation, detection, and classification. Although several published
research papers focus on specific topics in computer vision for autonomous
vehicles, to date, no general survey on deep learning applied in LiDAR point
clouds for autonomous vehicles exists. Thus, the goal of this paper is to
narrow the gap in this topic. More than 140 key contributions in the recent
five years are summarized in this survey, including the milestone 3D deep
architectures, the remarkable deep learning applications in 3D semantic
segmentation, object detection, and classification; specific datasets,
evaluation metrics, and the state of the art performance. Finally, we conclude
the remaining challenges and future researches.
- Abstract(参考訳): 近年,3次元LiDARデータからの識別的特徴学習におけるディープラーニングの進歩が,自動運転分野の急速な発展につながっている。
しかし、自動化された処理の不均一、非構造、ノイズ、巨大な3Dポイントクラウドは困難で面倒な作業です。
本稿では,lidar point cloudに適用される既存の魅力的なディープラーニングアーキテクチャを体系的にレビューし,セグメンテーションや検出,分類といった自律運転における特定のタスクを詳述する。
自動運転車のコンピュータビジョンにおける特定のトピックに焦点を当てた研究論文がいくつか発表されているが、LiDARポイントクラウドに適用されたディープラーニングに関する一般的な調査は存在しない。
したがって,本論文の目的は,このトピックのギャップを狭めることである。
マイルストーンとなる3D深層アーキテクチャ、3Dセマンティックセグメンテーションにおける注目すべきディープラーニングアプリケーション、オブジェクト検出と分類、特定のデータセット、評価指標、アートパフォーマンスの状態など、この5年間で140以上の重要なコントリビューションが要約されている。
最後に,残りの課題と今後の研究をまとめる。
関連論文リスト
- TS40K: a 3D Point Cloud Dataset of Rural Terrain and Electrical Transmission System [39.244727514293324]
TS40Kは欧州の農村部にある電気通信システムで4万Kmを超える3Dポイントクラウドデータセットである。
これは、電力グリッド検査のリスクの高いミッションを支援する研究コミュニティにとって、新しい問題であるだけでなく、自動運転や屋内の3Dデータとは異なる特徴を持つ3Dポイントクラウドも提供する。
本研究では,3次元セマンティックセグメンテーションと3次元オブジェクト検出に関するデータセット上での最先端手法の性能を評価する。
論文 参考訳(メタデータ) (2024-05-22T20:53:23Z) - Deep learning for 3D Object Detection and Tracking in Autonomous
Driving: A Brief Survey [3.224562109592693]
3Dポイントのクラウド学習は、他のあらゆるタイプの自動運転データの中で、ますます注目を集めている。
本稿では,3次元物体検出・追跡のためのディープラーニング手法の最近の進歩を示す。
論文 参考訳(メタデータ) (2023-11-10T13:03:37Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synthは、ポイントクラウド登録のための3Dトレーニングデータを自動的に生成する。
私たちはポイントクラウド登録ネットワークをもっと小さなサロゲートネットワークに置き換え、4056.43$のスピードアップを実現しました。
TUD-L,LINEMOD,Occluded-LINEMODに関する我々の研究結果は,検索データセットでトレーニングされたニューラルネットワークが,広く使用されているModelNet40データセットでトレーニングされたニューラルネットワークよりも一貫してパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-20T09:29:44Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
我々は、自動運転車のビジョンの文脈において、Deep Semanticの最も関連性があり最近の進歩について調査を行う。
私たちの主な目的は、それぞれの視点で直面している主要な方法、利点、制限、結果、課題に関する包括的な議論を提供することです。
論文 参考訳(メタデータ) (2023-03-08T01:29:55Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - Deep Learning Based 3D Segmentation: A Survey [42.44509605101214]
3Dセグメンテーションは、自律運転とロボット工学の応用でコンピュータビジョンの根幹的で難しい問題である。
近年、ディープラーニング技術が3Dセグメンテーションタスクの選択ツールとなっている。
本稿では,ディープラーニングに基づく3Dセグメンテーション技術の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2021-03-09T13:58:35Z) - Deep Learning for 3D Point Cloud Understanding: A Survey [16.35767262996978]
自律運転やロボティクスといった実用アプリケーションの開発は、3Dポイントのクラウド理解に注意を向けている。
ディープラーニングは、画像ベースのタスクにおいて顕著な成功を収めていますが、大規模で非構造的でノイズの多い3Dポイントを処理する際に、ディープニューラルネットワークが直面する多くのユニークな課題があります。
本稿では,この領域における最近の顕著な研究成果を,いくつかの方向から要約する。
論文 参考訳(メタデータ) (2020-09-18T16:34:12Z) - 3D Point Cloud Processing and Learning for Autonomous Driving [26.285659927609213]
本稿では,自動運転のための3Dポイントクラウド処理と学習についてレビューする。
LiDARセンサーは、オブジェクトやシーンの外面を正確に記録する3Dポイントの雲を収集する。
論文 参考訳(メタデータ) (2020-03-01T22:13:46Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
本稿では,ポイントクラウドにおけるディープラーニング手法の最近の進歩を概観する。
3D形状分類、3Dオブジェクトの検出と追跡、3Dポイントクラウドセグメンテーションを含む3つの主要なタスクをカバーしている。
また、いくつかの公開データセットで比較結果を提示する。
論文 参考訳(メタデータ) (2019-12-27T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。