論文の概要: A Modified Fourier-Mellin Approach for Source Device Identification on
Stabilized Videos
- arxiv url: http://arxiv.org/abs/2005.09984v1
- Date: Wed, 20 May 2020 12:06:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 06:07:14.708042
- Title: A Modified Fourier-Mellin Approach for Source Device Identification on
Stabilized Videos
- Title(参考訳): 安定化ビデオにおけるソースデバイス同定のための修正フーリエ・メリンアプローチ
- Authors: Sara Mandelli, Fabrizio Argenti, Paolo Bestagini, Massimo Iuliani,
Alessandro Piva, Stefano Tubaro
- Abstract要約: マルチメディアの法医学ツールは通常 取得したフレームに カメラセンサーが残した 特徴的なノイズの痕跡を利用する
この分析では,カメラを特徴付けるノイズパターンと,解析対象の映像フレームから抽出したノイズパターンを幾何学的に整列させる必要がある。
本稿では,周波数領域におけるスケーリングと回転パラメータの探索により,この制限を克服することを提案する。
- 参考スコア(独自算出の注目度): 72.40789387139063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To decide whether a digital video has been captured by a given device,
multimedia forensic tools usually exploit characteristic noise traces left by
the camera sensor on the acquired frames. This analysis requires that the noise
pattern characterizing the camera and the noise pattern extracted from video
frames under analysis are geometrically aligned. However, in many practical
scenarios this does not occur, thus a re-alignment or synchronization has to be
performed. Current solutions often require time consuming search of the
realignment transformation parameters. In this paper, we propose to overcome
this limitation by searching scaling and rotation parameters in the frequency
domain. The proposed algorithm tested on real videos from a well-known
state-of-the-art dataset shows promising results.
- Abstract(参考訳): デジタル映像が所定の装置で撮影されたかどうかを判定するために、マルチメディア鑑識ツールは、通常、取得したフレームにカメラセンサが残した特性ノイズトレースを利用する。
この分析では,カメラを特徴付けるノイズパターンと,解析対象の映像フレームから抽出したノイズパターンを幾何学的に整列させる必要がある。
しかし、多くの現実的なシナリオではこれは起こらないため、再調整や同期を行う必要がある。
現在の解はしばしば、配向変換パラメータの探索に時間を要する。
本稿では,周波数領域におけるスケーリングパラメータと回転パラメータを探索することにより,この制限を克服する。
提案したアルゴリズムは、よく知られた最先端データセットの実際のビデオでテストされ、有望な結果を示している。
関連論文リスト
- GPU-accelerated SIFT-aided source identification of stabilized videos [63.084540168532065]
我々は、安定化フレームインバージョンフレームワークにおけるグラフィクス処理ユニット(GPU)の並列化機能を利用する。
我々はSIFT機能を活用することを提案する。
カメラのモーメントを推定し 1%の確率で 時間セグメントを識別します
実験により,提案手法の有効性を確認し,必要な計算時間を短縮し,情報源の同定精度を向上させる。
論文 参考訳(メタデータ) (2022-07-29T07:01:31Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
低フレームのぼかしビデオから高フレームの高解像度のシャープビデオを生成することを目的とした実時間ビデオ超解法(STVSR)問題について検討する。
本稿では,モデルベースと学習ベースの両方の手法を用いて,解釈可能なSTVSRフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-21T21:34:05Z) - Spatial-Temporal Frequency Forgery Clue for Video Forgery Detection in
VIS and NIR Scenario [87.72258480670627]
既存の周波数領域に基づく顔偽造検出手法では、GAN鍛造画像は、実際の画像と比較して、周波数スペクトルに明らかな格子状の視覚的アーチファクトを持つ。
本稿では,コサイン変換に基づくフォージェリークリュー拡張ネットワーク(FCAN-DCT)を提案し,より包括的な時空間特徴表現を実現する。
論文 参考訳(メタデータ) (2022-07-05T09:27:53Z) - Task Agnostic Restoration of Natural Video Dynamics [10.078712109708592]
多くのビデオ復元・翻訳タスクでは、各フレームを独立して処理することにより、画像処理操作を映像領域に「ナビ」拡張する。
本稿では,不整合ビデオから一貫した動きのダイナミクスを推論し,活用して時間的フリックを緩和する,このタスクのための一般的なフレームワークを提案する。
提案フレームワークは、多数の画像処理アプリケーションによって処理される2つのベンチマークデータセット、DAVISとvidevo.net上でSOTA結果を生成する。
論文 参考訳(メタデータ) (2022-06-08T09:00:31Z) - Video Demoireing with Relation-Based Temporal Consistency [68.20281109859998]
カラー歪みのように見えるモアレパターンは、デジタルカメラでスクリーンを撮影する際に、画像と映像の画質を著しく劣化させる。
我々は、このような望ましくないモアレパターンをビデオで除去する方法を研究している。
論文 参考訳(メタデータ) (2022-04-06T17:45:38Z) - Temporally stable video segmentation without video annotations [6.184270985214255]
静止画像分割モデルを教師なしの方法でビデオに適応させる手法を提案する。
整合性尺度がヒトの判断とよく相関していることを検証する。
生成したセグメンテーションビデオの精度の低下を最小限に抑えて改善を観察する。
論文 参考訳(メタデータ) (2021-10-17T18:59:11Z) - Cross-Camera Human Motion Transfer by Time Series Analysis [11.454103393879368]
動きの季節性を同定し,移動可能なパターンを抽出する付加モデルを構築するアルゴリズムを提案する。
我々は、HRから派生したパターンを活用することにより、低解像度ビデオのポーズ推定を改善する。
論文 参考訳(メタデータ) (2021-09-29T03:39:01Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Exploring Spatial-Temporal Multi-Frequency Analysis for High-Fidelity
and Temporal-Consistency Video Prediction [12.84409065286371]
本稿では,マルチレベルウェーブレット解析に基づく映像予測ネットワークを提案し,空間的・時間的情報を統一的に扱う。
本モデルでは,最先端の作業に対する忠実度と時間的整合性に大きな改善が見られた。
論文 参考訳(メタデータ) (2020-02-23T13:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。