論文の概要: Batch Decorrelation for Active Metric Learning
- arxiv url: http://arxiv.org/abs/2005.10008v2
- Date: Sat, 23 May 2020 12:52:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 04:56:23.933545
- Title: Batch Decorrelation for Active Metric Learning
- Title(参考訳): アクティブメトリック学習のためのバッチデコレーション
- Authors: Priyadarshini K, Ritesh Goru, Siddhartha Chaudhuri and Subhasis
Chaudhuri
- Abstract要約: 本稿では,三重項に基づく類似度評価を行い,距離指標のパラメトリックモデルを学習するためのアクティブな学習戦略を提案する。
クラスベースの学習における先行研究とは対照的に、オブジェクト間の(異なる)相似性のエム度を表現するエムメトリクスに焦点を当てる。
- 参考スコア(独自算出の注目度): 21.99577268213412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an active learning strategy for training parametric models of
distance metrics, given triplet-based similarity assessments: object $x_i$ is
more similar to object $x_j$ than to $x_k$. In contrast to prior work on
class-based learning, where the fundamental goal is classification and any
implicit or explicit metric is binary, we focus on {\em perceptual} metrics
that express the {\em degree} of (dis)similarity between objects. We find that
standard active learning approaches degrade when annotations are requested for
{\em batches} of triplets at a time: our studies suggest that correlation among
triplets is responsible. In this work, we propose a novel method to {\em
decorrelate} batches of triplets, that jointly balances informativeness and
diversity while decoupling the choice of heuristic for each criterion.
Experiments indicate our method is general, adaptable, and outperforms the
state-of-the-art.
- Abstract(参考訳): オブジェクト $x_i$ はオブジェクト $x_j$ よりもオブジェクト $x_k$ に近い。
基本的な目標が分類であり、暗黙的あるいは明示的なメトリクスがバイナリであるクラスベース学習の先行研究とは対照的に、オブジェクト間の(dis)相似性の「em度」を表す「emperceptual」メトリックに焦点を当てている。
標準的なアクティブラーニングアプローチは,トリプレットの"em batches"に対するアノテーション要求が一度に発生すると劣化することがわかった。
本研究では,各基準に対するヒューリスティックの選択を分離しながら,情報量と多様性を両立させる三重項のバッチをデコレートする手法を提案する。
実験により,本手法は汎用的で適応可能であり,最先端技術よりも優れていることが示された。
関連論文リスト
- Human-in-the-loop: Towards Label Embeddings for Measuring Classification Difficulty [14.452983136429967]
教師付き学習では、トレーニングプロセスの第1段階、つまりアノテーションフェーズにおいて、すでに不確実性が発生する可能性がある。
この研究の主な考え方は、基礎となる真理ラベルの仮定を捨て、代わりにアノテーションを多次元空間に埋め込むことである。
本稿では,複数のアノテータが独立してインスタンスをラベル付けする,様々な状況に展開する手法を提案する。
論文 参考訳(メタデータ) (2023-11-15T11:23:15Z) - DiffKendall: A Novel Approach for Few-Shot Learning with Differentiable
Kendall's Rank Correlation [16.038667928358763]
ほとんどショットラーニングは、ベースデータセットでトレーニングされたモデルを、それまでモデルで見られていなかった新しいタスクに適応することを目的としていない。
これはしばしば、新しいクラスのチャネルにまたがって、機能値の比較的均一な分布をもたらす。
特徴チャネルのランク付けの重要性は、幾何学的類似度指標よりも、数ショット学習においてより信頼性の高い指標であることが示される。
論文 参考訳(メタデータ) (2023-07-28T05:32:56Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
適応的階層的類似度メトリック学習法を提案する。
ノイズに敏感な2つの情報、すなわち、クラスワイドのばらつきとサンプルワイドの一貫性を考える。
提案手法は,現在の深層学習手法と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-10-29T02:12:18Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Maximizing Conditional Entropy for Batch-Mode Active Learning of
Perceptual Metrics [14.777274711706653]
最大エントロピー原理を用いたバッチモードアクティブメトリック学習の新たなアプローチを提案する。
単調に増大する部分モジュラーエントロピー関数を利用して効率的なグリードアルゴリズムを構築する。
私たちのアプローチは、トリプルレット全体の情報性と多様性のバランスをとる統一されたスコアを定義する最初のバッチモードアクティブメトリック学習方法です。
論文 参考訳(メタデータ) (2021-02-15T06:55:17Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z) - Unsupervised Deep Metric Learning via Orthogonality based Probabilistic
Loss [27.955068939695042]
既存の最先端のメトリック学習アプローチでは、メトリクスを学ぶためにクラスラベルが必要である。
クラスラベルを使わずにメトリクスを学習する教師なしアプローチを提案する。
擬似ラベルは、メートル法学習のガイドとなる3つの例を形成するために使用される。
論文 参考訳(メタデータ) (2020-08-22T17:13:33Z) - Metric Learning vs Classification for Disentangled Music Representation
Learning [36.74680586571013]
本稿では,メートル法学習と分類,ゆがみの関係を包括的に解明する単一の表現学習フレームワークを提案する。
分類に基づくモデルは、訓練時間、類似性検索、自動タグ付けに一般的に有利であるのに対し、深度検定学習は三重項予測により良い性能を示す。
論文 参考訳(メタデータ) (2020-08-09T13:53:12Z) - Learning from Aggregate Observations [82.44304647051243]
本研究では,一組のインスタンスに監視信号が与えられる集合観察から学習する問題について検討する。
本稿では,多種多様な集合観測に適合する一般的な確率的枠組みを提案する。
単純な極大解は様々な微分可能なモデルに適用できる。
論文 参考訳(メタデータ) (2020-04-14T06:18:50Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z) - Learning to Compare Relation: Semantic Alignment for Few-Shot Learning [48.463122399494175]
本稿では,コンテンツアライメントに頑健な関係を比較するための新しいセマンティックアライメントモデルを提案する。
数ショットの学習データセットについて広範な実験を行う。
論文 参考訳(メタデータ) (2020-02-29T08:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。