Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm
- URL: http://arxiv.org/abs/2005.10026v1
- Date: Wed, 20 May 2020 13:15:48 GMT
- Title: Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm
- Authors: Marc Etheve and Zacharie Al\`es and C\^ome Bissuel and Olivier Juan
and Safia Kedad-Sidhoum
- Abstract summary: We leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem.
We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task.
- Score: 0.10499611180329801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixed integer linear programs are commonly solved by Branch and Bound
algorithms. A key factor of the efficiency of the most successful commercial
solvers is their fine-tuned heuristics. In this paper, we leverage patterns in
real-world instances to learn from scratch a new branching strategy optimised
for a given problem and compare it with a commercial solver. We propose FMSTS,
a novel Reinforcement Learning approach specifically designed for this task.
The strength of our method lies in the consistency between a local value
function and a global metric of interest. In addition, we provide insights for
adapting known RL techniques to the Branch and Bound setting, and present a new
neural network architecture inspired from the literature. To our knowledge, it
is the first time Reinforcement Learning has been used to fully optimise the
branching strategy. Computational experiments show that our method is
appropriate and able to generalise well to new instances.
Related papers
- Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
We consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector.
We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.
arXiv Detail & Related papers (2020-05-18T08:41:39Z) - Unbiased Deep Reinforcement Learning: A General Training Framework for
Existing and Future Algorithms [3.7050607140679026]
We propose a novel training framework that is conceptually comprehensible and potentially easy to be generalized to all feasible algorithms for reinforcement learning.
We employ Monte-carlo sampling to achieve raw data inputs, and train them in batch to achieve Markov decision process sequences.
We propose several algorithms embedded with our new framework to deal with typical discrete and continuous scenarios.
arXiv Detail & Related papers (2020-05-12T01:51:08Z) - A General Large Neighborhood Search Framework for Solving Integer Linear
Programs [46.62993477453986]
We focus on solving integer programs, and ground our approach in the large neighborhood search (SLN) paradigm.
We show that our LNS framework can significantly outperform compared to state-of-the-art commercial solvers such as Gurobi.
arXiv Detail & Related papers (2020-03-29T23:08:14Z) - Model-based Multi-Agent Reinforcement Learning with Cooperative
Prioritized Sweeping [4.5497948012757865]
We present a new model-based reinforcement learning algorithm, Cooperative Prioritized Sweeping.
The algorithm allows for sample-efficient learning on large problems by exploiting a factorization to approximate the value function.
Our method outperforms the state-of-the-art algorithm sparse cooperative Q-learning algorithm, both on the well-known SysAdmin benchmark and randomized environments.
arXiv Detail & Related papers (2020-01-15T19:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.