Evolving Reinforcement Learning Algorithms
- URL: http://arxiv.org/abs/2101.03958v3
- Date: Fri, 26 Mar 2021 22:53:58 GMT
- Title: Evolving Reinforcement Learning Algorithms
- Authors: John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey
Levine, Quoc V. Le, Honglak Lee, Aleksandra Faust
- Abstract summary: We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
- Score: 186.62294652057062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for meta-learning reinforcement learning algorithms by
searching over the space of computational graphs which compute the loss
function for a value-based model-free RL agent to optimize. The learned
algorithms are domain-agnostic and can generalize to new environments not seen
during training. Our method can both learn from scratch and bootstrap off known
existing algorithms, like DQN, enabling interpretable modifications which
improve performance. Learning from scratch on simple classical control and
gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm.
Bootstrapped from DQN, we highlight two learned algorithms which obtain good
generalization performance over other classical control tasks, gridworld type
tasks, and Atari games. The analysis of the learned algorithm behavior shows
resemblance to recently proposed RL algorithms that address overestimation in
value-based methods.
Related papers
- Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - A Generalist Neural Algorithmic Learner [18.425083543441776]
We build a single graph neural network processor capable of learning to execute a wide range of algorithms.
We show that it is possible to effectively learn algorithms in a multi-task manner, so long as we can learn to execute them well in a single-task regime.
arXiv Detail & Related papers (2022-09-22T16:41:33Z) - Tree-Based Adaptive Model Learning [62.997667081978825]
We extend the Kearns-Vazirani learning algorithm to handle systems that change over time.
We present a new learning algorithm that can reuse and update previously learned behavior, implement it in the LearnLib library, and evaluate it on large examples.
arXiv Detail & Related papers (2022-08-31T21:24:22Z) - Scalable Deep Reinforcement Learning Algorithms for Mean Field Games [60.550128966505625]
Mean Field Games (MFGs) have been introduced to efficiently approximate games with very large populations of strategic agents.
Recently, the question of learning equilibria in MFGs has gained momentum, particularly using model-free reinforcement learning (RL) methods.
Existing algorithms to solve MFGs require the mixing of approximated quantities such as strategies or $q$-values.
We propose two methods to address this shortcoming. The first one learns a mixed strategy from distillation of historical data into a neural network and is applied to the Fictitious Play algorithm.
The second one is an online mixing method based on
arXiv Detail & Related papers (2022-03-22T18:10:32Z) - The Information Geometry of Unsupervised Reinforcement Learning [133.20816939521941]
Unsupervised skill discovery is a class of algorithms that learn a set of policies without access to a reward function.
We show that unsupervised skill discovery algorithms do not learn skills that are optimal for every possible reward function.
arXiv Detail & Related papers (2021-10-06T13:08:36Z) - Emphatic Algorithms for Deep Reinforcement Learning [43.17171330951343]
Temporal difference learning algorithms can become unstable when combined with function approximation and off-policy sampling.
Emphatic temporal difference (ETD($lambda$) algorithm ensures convergence in the linear case by appropriately weighting the TD($lambda$) updates.
We show that naively adapting ETD($lambda$) to popular deep reinforcement learning algorithms, which use forward view multi-step returns, results in poor performance.
arXiv Detail & Related papers (2021-06-21T12:11:39Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
We focus on a series of inference-based actor-critic algorithms to decouple their algorithmic innovations and implementation decisions.
We identify substantial performance drops whenever implementation details are mismatched for algorithmic choices.
Results show which implementation details are co-adapted and co-evolved with algorithms.
arXiv Detail & Related papers (2021-03-31T17:55:20Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.