Uncertainty Quantification Using Neural Networks for Molecular Property
Prediction
- URL: http://arxiv.org/abs/2005.10036v1
- Date: Wed, 20 May 2020 13:31:20 GMT
- Title: Uncertainty Quantification Using Neural Networks for Molecular Property
Prediction
- Authors: Lior Hirschfeld, Kyle Swanson, Kevin Yang, Regina Barzilay, Connor W.
Coley
- Abstract summary: We systematically evaluate several methods on five benchmark datasets using multiple complementary performance metrics.
None of the methods we tested is unequivocally superior to all others, and none produces a particularly reliable ranking of errors across multiple datasets.
We conclude with a practical recommendation as to which existing techniques seem to perform well relative to others.
- Score: 33.34534208450156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification (UQ) is an important component of molecular
property prediction, particularly for drug discovery applications where model
predictions direct experimental design and where unanticipated imprecision
wastes valuable time and resources. The need for UQ is especially acute for
neural models, which are becoming increasingly standard yet are challenging to
interpret. While several approaches to UQ have been proposed in the literature,
there is no clear consensus on the comparative performance of these models. In
this paper, we study this question in the context of regression tasks. We
systematically evaluate several methods on five benchmark datasets using
multiple complementary performance metrics. Our experiments show that none of
the methods we tested is unequivocally superior to all others, and none
produces a particularly reliable ranking of errors across multiple datasets.
While we believe these results show that existing UQ methods are not sufficient
for all common use-cases and demonstrate the benefits of further research, we
conclude with a practical recommendation as to which existing techniques seem
to perform well relative to others.
Related papers
- Legitimate ground-truth-free metrics for deep uncertainty classification scoring [3.9599054392856483]
The use of Uncertainty Quantification (UQ) methods in production remains limited.
This limitation is exacerbated by the challenge of validating UQ methods in absence of UQ ground truth.
This paper investigates such metrics and proves that they are theoretically well-behaved and actually tied to some uncertainty ground truth.
arXiv Detail & Related papers (2024-10-30T14:14:32Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification (UQ) is a critical component of machine learning (ML) applications.
We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.
We conduct a large-scale empirical investigation of UQ and normalization techniques across nine tasks, and identify the most promising approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs [44.890946409769924]
Neural Operators (NOs) have emerged as particularly promising quantification.
We show that ensembling several NOs can identify high-error regions and provide good uncertainty estimates.
We then introduce Operator-ProbConserv, a method that uses these well-calibrated UQ estimates within the ProbConserv framework to update the model.
arXiv Detail & Related papers (2024-03-15T19:21:27Z) - Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search [2.711812013460678]
We introduce AutoGNNUQ, an automated uncertainty quantification (UQ) approach for molecular property prediction.
Our approach employs variance decomposition to separate data (aleatoric) and model (epistemic) uncertainties, providing valuable insights for reducing them.
AutoGNNUQ has broad applicability in domains such as drug discovery and materials science, where accurate uncertainty quantification is crucial for decision-making.
arXiv Detail & Related papers (2023-07-19T20:03:42Z) - MUBen: Benchmarking the Uncertainty of Molecular Representation Models [32.41186397454142]
Uncertainty quantification (UQ) methods can be used to improve the models' calibration of predictions.
We present MUBen, which evaluates different UQ methods for state-of-the-art backbone molecular representation models.
Our study offers insights for selecting UQ for backbone models, which can facilitate research on uncertainty-critical applications.
arXiv Detail & Related papers (2023-06-14T13:06:04Z) - Single-model uncertainty quantification in neural network potentials
does not consistently outperform model ensembles [0.7499722271664145]
Neural networks (NNs) often assign high confidence to their predictions, even for points far out-of-distribution.
Uncertainty quantification (UQ) is a challenge when they are employed to model interatomic potentials in materials systems.
Differentiable UQ techniques can find new informative data and drive active learning loops for robust potentials.
arXiv Detail & Related papers (2023-05-02T19:41:17Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
We introduce a sampling-free approach that is generic and easy to deploy.
We produce reliable uncertainty estimates on par with state-of-the-art methods at a significantly lower computational cost.
arXiv Detail & Related papers (2022-11-21T13:23:09Z) - Towards Clear Expectations for Uncertainty Estimation [64.20262246029286]
Uncertainty Quantification (UQ) is crucial to achieve trustworthy Machine Learning (ML)
Most UQ methods suffer from disparate and inconsistent evaluation protocols.
This opinion paper offers a new perspective by specifying those requirements through five downstream tasks.
arXiv Detail & Related papers (2022-07-27T07:50:57Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.