Map Generation from Large Scale Incomplete and Inaccurate Data Labels
- URL: http://arxiv.org/abs/2005.10053v1
- Date: Wed, 20 May 2020 13:59:43 GMT
- Title: Map Generation from Large Scale Incomplete and Inaccurate Data Labels
- Authors: Rui Zhang, Conrad Albrecht, Wei Zhang, Xiaodong Cui, Ulrich Finkler,
David Kung, Siyuan Lu
- Abstract summary: We present progress in developing an algorithmic pipeline and distributed compute system that automates the process of map creation using high resolution aerial images.
We adopt state-of-the-art convolutional neural network architectures such as the U-Net and the CycleGAN to incrementally generate maps with increasingly more accurate and more complete labels of man-made infrastructure.
- Score: 24.205001970190924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately and globally mapping human infrastructure is an important and
challenging task with applications in routing, regulation compliance
monitoring, and natural disaster response management etc.. In this paper we
present progress in developing an algorithmic pipeline and distributed compute
system that automates the process of map creation using high resolution aerial
images. Unlike previous studies, most of which use datasets that are available
only in a few cities across the world, we utilizes publicly available imagery
and map data, both of which cover the contiguous United States (CONUS). We
approach the technical challenge of inaccurate and incomplete training data
adopting state-of-the-art convolutional neural network architectures such as
the U-Net and the CycleGAN to incrementally generate maps with increasingly
more accurate and more complete labels of man-made infrastructure such as roads
and houses. Since scaling the mapping task to CONUS calls for parallelization,
we then adopted an asynchronous distributed stochastic parallel gradient
descent training scheme to distribute the computational workload onto a cluster
of GPUs with nearly linear speed-up.
Related papers
- Radio Map Prediction from Aerial Images and Application to Coverage Optimization [46.870065000932016]
We focus on predicting path loss radio maps using convolutional neural networks.
We show that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task.
We introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity.
arXiv Detail & Related papers (2024-10-07T09:19:20Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.
The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - Surrogate Modeling of Trajectory Map-matching in Urban Road Networks using Transformer Sequence-to-Sequence Model [1.3812010983144802]
This paper introduces a deep-learning model, specifically the transformer-based encoder-decoder model, to perform as a surrogate for offline map-matching algorithms.
The model is trained and evaluated using GPS traces collected in Manhattan, New York.
arXiv Detail & Related papers (2024-04-18T18:39:23Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
We develop a pipeline that utilizes a diffusion model to generate extensive training data.
We are the first to generate images conditioned on a location dot map with a diffusion model.
Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated.
arXiv Detail & Related papers (2024-01-25T07:28:22Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
We propose a novel graph autoencoder architecture designed to extract powerful and robust node embeddings.
We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs.
Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Semi-supervised Road Updating Network (SRUNet): A Deep Learning Method
for Road Updating from Remote Sensing Imagery and Historical Vector Maps [3.350048575501172]
We propose a road detection method based on semi-supervised learning (SRUNet) specifically for road-updating applications.
The proposed SRUNet can provide stable, up-to-date, and reliable prediction results for a wide range of road renewal tasks.
arXiv Detail & Related papers (2023-04-28T16:51:35Z) - GAN-Supervised Dense Visual Alignment [95.37027391102684]
We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end.
Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode.
arXiv Detail & Related papers (2021-12-09T18:59:58Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - A SLAM Map Restoration Algorithm Based on Submaps and an Undirected
Connected Graph [0.0]
We present a method of reconstructing a complete global map of UAV datasets by sequentially merging the submaps.
Results show that the integrity of the mapping was significantly better than that of the current mainstream SLAM method.
arXiv Detail & Related papers (2020-07-29T04:26:36Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.