Feasibility Assessment For Practical Continuous Variable Quantum Key
Distribution Over The Satellite-to-Earth Channel
- URL: http://arxiv.org/abs/2005.10468v4
- Date: Mon, 24 Aug 2020 06:59:27 GMT
- Title: Feasibility Assessment For Practical Continuous Variable Quantum Key
Distribution Over The Satellite-to-Earth Channel
- Authors: Sebastian Kish, Eduardo Villase\~nor, Robert Malaney, Kerry Mudge,
Kenneth Grant
- Abstract summary: Quantum key distribution (QKD) using continuous variable (CV) technology has only been demonstrated over short-range terrestrial links.
We first review the concepts and technologies that will enable CV-QKD over the satellite-to-Earth channels.
We conclude that for a wide range of pragmatic system models, CS-QKD with information-theoretic security in the satellite-to-Earth channel is feasible.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, quantum key distribution (QKD) using continuous variable (CV)
technology has only been demonstrated over short-range terrestrial links. Here
we attempt to answer whether CV-QKD over the much longer satellite-to-Earth
channel is feasible. To this end, we first review the concepts and technologies
that will enable CV-QKD over the satellite-to-Earth channels. We then consider,
in the infinite key limit, the simplest-to-deploy QKD protocols, the coherent
state (CS) QKD protocol with homodyne detection and the CS-QKD protocol with
heterodyne detection. We then focus on the CS-QKD protocol with heterodyne
detection in the pragmatic setting of finite keys, where complete security
against general attacks is known. We pay particular attention to the relevant
noise terms in the satellite-to-Earth channel and their impact on the secret
key rates. In system set-ups where diffraction dominates losses, we find that
the main components of the total excess noise are the intensity fluctuations
due to scintillation, and the time-of-arrival fluctuations between signal and
local oscillator. We conclude that for a wide range of pragmatic system models,
CS-QKD with information-theoretic security in the satellite-to-Earth channel is
feasible.
Related papers
- Assessment of practical satellite quantum key distribution architectures for current and near-future missions [0.0]
We review the manifold of design choices that concur to form the set of possible SatQKD architectures.
We identify as advisable options the use of low-Earth orbit satellites as trusted nodes for prepare-and-measure discrete-variable QKD downlinks.
The decoy-state version of BB84 is found to be the most promising QKD protocols due to the maturity of the security proofs, the high key generation rate and low system complexity.
arXiv Detail & Related papers (2024-04-08T16:52:15Z) - End-to-End Demonstration for CubeSatellite Quantum Key Distribution [0.0]
We investigate the feasibility of satellite-based quantum key exchange using low-cost compact nano-satellites.
This paper demonstrates the first prototype of system level quantum key distribution aimed at the Cube satellite scenario.
arXiv Detail & Related papers (2023-12-04T16:25:06Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Blockwise Key Distillation in Satellite-based Quantum Key Distribution [68.8891637551539]
We compare two key distillation techniques for satellite-based quantum key distribution.
One is the traditional em non-blockwise strategy that treats all the signals as a whole.
The other is a em blockwise strategy that divides the signals into individual blocks that have similar noise characteristics and processes them independently.
arXiv Detail & Related papers (2023-07-10T01:34:58Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Quantum Keyless Privacy vs. Quantum Key Distribution for Space Links [0.0]
We study information theoretical security for space links between a satellite and a ground-station.
We demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel.
arXiv Detail & Related papers (2020-12-07T01:33:40Z) - Use of a Local Local Oscillator for the Satellite-to-Earth Channel [0.0]
Continuous variable quantum key distribution (CV-QKD) offers information-theoretic secure key sharing between two parties.
The sharing of a phase reference frame is an essential requirement for coherent detection in CV-QKD.
We develop a new noise model of a current state-of-the-art LLO scheme in the context of the satellite-to-Earth channel.
arXiv Detail & Related papers (2020-10-19T11:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.