End-to-End Demonstration for CubeSatellite Quantum Key Distribution
- URL: http://arxiv.org/abs/2312.02002v2
- Date: Tue, 2 Apr 2024 14:43:26 GMT
- Title: End-to-End Demonstration for CubeSatellite Quantum Key Distribution
- Authors: Peide Zhang, Jaya Sagar, Elliott Hastings, Milan Stefko, Siddarth Joshi, John Rarity,
- Abstract summary: We investigate the feasibility of satellite-based quantum key exchange using low-cost compact nano-satellites.
This paper demonstrates the first prototype of system level quantum key distribution aimed at the Cube satellite scenario.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) provides a method of ensuring security using the laws of physics, avoiding the risks inherent in cryptosystems protected by computational complexity. Here we investigate the feasibility of satellite-based quantum key exchange using low-cost compact nano-satellites. This paper demonstrates the first prototype of system level quantum key distribution aimed at the Cube satellite scenario. It consists of a transmitter payload, a ground receiver and simulated free space channel to verify the timing and synchronisation (T&S) scheme designed for QKD and the required high loss tolerance of both QKD and T&S channels. The transmitter is designed to be deployed on various up-coming nano-satellite missions in the UK and internationally. The effects of channel loss, background noise, gate width and mean photon number on the secure key rate (SKR) and quantum bit error rate (QBER) are discussed. We also analyse the source of QBER and establish the relationship between effective signal noise ratio (ESNR) and noise level, signal strength, gating window and other parameters as a reference for SKR optimization. The experiment shows that it can tolerate the 40 dB loss expected in space to ground QKD and with small adjustment decoy states can be achieved. The discussion offers valuable insight not only for the design and optimization of miniature low-cost satellite-based QKD systems but also any other short or long range free space QKD on the ground or in the air.
Related papers
- The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Blockwise Key Distillation in Satellite-based Quantum Key Distribution [68.8891637551539]
We compare two key distillation techniques for satellite-based quantum key distribution.
One is the traditional em non-blockwise strategy that treats all the signals as a whole.
The other is a em blockwise strategy that divides the signals into individual blocks that have similar noise characteristics and processes them independently.
arXiv Detail & Related papers (2023-07-10T01:34:58Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Finite key performance of satellite quantum key distribution under
practical constraints [0.0]
Global-scale quantum communication networks will require efficient long-distance distribution of quantum signals.
Satellites enable intercontinental quantum communication by exploiting more benign inverse square free-space attenuation and long sight lines.
arXiv Detail & Related papers (2023-01-30T19:00:01Z) - Advances in entanglement-based QKD for space applications [0.0]
Quantum key distribution (QKD) enables tap-proof exchange of cryptographic keys guaranteed by the very laws of physics.
One of the last remaining roadblocks is the high loss experienced during terrestrial distribution of photons, which limits the distance between the communicating parties.
We review the most relevant advances in entanglement-based QKD which are implementable over free-space links and thus enable distribution of secure keys from orbit.
arXiv Detail & Related papers (2022-10-05T13:09:36Z) - Finite resource performance of small satellite-based quantum key
distribution missions [36.136619420474766]
Recent developments in finite key analysis allow three small-satellite-based QKD projects to produce secret keys even under very high loss conditions.
We highlight the short and long-term perspectives on the challenges and potential future developments in small-satellite-based QKD and quantum networks.
arXiv Detail & Related papers (2022-04-26T18:00:03Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Finite key effects in satellite quantum key distribution [0.0]
Satellite quantum communication overcomes optical fibre range limitations.
First realisations of satellite quantum key distribution (SatQKD) being rapidly developed.
limited transmission times between satellite and ground station severely constrains the amount of secret key due to finite-block size effects.
We quantify practical SatQKD performance limits and examine the effects of link efficiency, background light, source quality, and overpass to estimate long-term key generation capacity.
arXiv Detail & Related papers (2020-12-14T18:59:30Z) - Feasibility Assessment For Practical Continuous Variable Quantum Key
Distribution Over The Satellite-to-Earth Channel [0.0]
Quantum key distribution (QKD) using continuous variable (CV) technology has only been demonstrated over short-range terrestrial links.
We first review the concepts and technologies that will enable CV-QKD over the satellite-to-Earth channels.
We conclude that for a wide range of pragmatic system models, CS-QKD with information-theoretic security in the satellite-to-Earth channel is feasible.
arXiv Detail & Related papers (2020-05-21T05:08:16Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.