Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator
- URL: http://arxiv.org/abs/2005.10477v1
- Date: Thu, 21 May 2020 06:11:33 GMT
- Title: Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator
- Authors: Siamak Zamani Dadaneh, Shahin Boluki, Mingzhang Yin, Mingyuan Zhou,
Xiaoning Qian
- Abstract summary: Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
- Score: 62.26981903551382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic hashing has become a crucial component of fast similarity search in
many large-scale information retrieval systems, in particular, for text data.
Variational auto-encoders (VAEs) with binary latent variables as hashing codes
provide state-of-the-art performance in terms of precision for document
retrieval. We propose a pairwise loss function with discrete latent VAE to
reward within-class similarity and between-class dissimilarity for supervised
hashing. Instead of solving the optimization relying on existing biased
gradient estimators, an unbiased low-variance gradient estimator is adopted to
optimize the hashing function by evaluating the non-differentiable loss
function over two correlated sets of binary hashing codes to control the
variance of gradient estimates. This new semantic hashing framework achieves
superior performance compared to the state-of-the-arts, as demonstrated by our
comprehensive experiments.
Related papers
- Deep Self-Adaptive Hashing for Image Retrieval [16.768754022585057]
We propose a textbfDeep Self-Adaptive Hashing(DSAH) model to adaptively capture the semantic information with two special designs.
First, we construct a neighborhood-based similarity matrix, and then refine this initial similarity matrix with a novel update strategy.
Secondly, we measure the priorities of data pairs with PIC and assign adaptive weights to them, which is relies on the assumption that more dissimilar data pairs contain more discriminative information for hash learning.
arXiv Detail & Related papers (2021-08-16T13:53:20Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously.
The former suffers much from extreme foreground-background imbalance due to the large number of anchors.
This paper proposes a novel framework to replace the classification task in one-stage detectors with a ranking task.
arXiv Detail & Related papers (2020-08-17T13:22:01Z) - Self-Supervised Bernoulli Autoencoders for Semi-Supervised Hashing [1.8899300124593648]
This paper investigates the robustness of hashing methods based on variational autoencoders to the lack of supervision.
We propose a novel supervision method in which the model uses its label distribution predictions to implement the pairwise objective.
Our experiments show that both methods can significantly increase the hash codes' quality.
arXiv Detail & Related papers (2020-07-17T07:47:10Z) - Generative Semantic Hashing Enhanced via Boltzmann Machines [61.688380278649056]
Existing generative-hashing methods mostly assume a factorized form for the posterior distribution.
We propose to employ the distribution of Boltzmann machine as the retrievalal posterior.
We show that by effectively modeling correlations among different bits within a hash code, our model can achieve significant performance gains.
arXiv Detail & Related papers (2020-06-16T01:23:39Z) - Learning to hash with semantic similarity metrics and empirical KL
divergence [3.04585143845864]
Learning to hash is an efficient paradigm for exact and approximate nearest neighbor search from massive databases.
Binary hash codes are typically extracted from an image by rounding output features from a CNN, which is trained on a supervised binary similar/ dissimilar task.
We overcome (i) via a novel loss function encouraging the relative hash code distances of learned features to match those derived from their targets.
We address (ii) via a differentiable estimate of the KL divergence between network outputs and a binary target distribution, resulting in minimal information loss when the features are rounded to binary.
arXiv Detail & Related papers (2020-05-11T08:20:26Z) - Reinforcing Short-Length Hashing [61.75883795807109]
Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
arXiv Detail & Related papers (2020-04-24T02:23:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.