Reinforcing Short-Length Hashing
- URL: http://arxiv.org/abs/2004.11511v1
- Date: Fri, 24 Apr 2020 02:23:52 GMT
- Title: Reinforcing Short-Length Hashing
- Authors: Xingbo Liu, Xiushan Nie, Qi Dai, Yupan Huang, Yilong Yin
- Abstract summary: Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
- Score: 61.75883795807109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the compelling efficiency in retrieval and storage,
similarity-preserving hashing has been widely applied to approximate nearest
neighbor search in large-scale image retrieval. However, existing methods have
poor performance in retrieval using an extremely short-length hash code due to
weak ability of classification and poor distribution of hash bit. To address
this issue, in this study, we propose a novel reinforcing short-length hashing
(RSLH). In this proposed RSLH, mutual reconstruction between the hash
representation and semantic labels is performed to preserve the semantic
information. Furthermore, to enhance the accuracy of hash representation, a
pairwise similarity matrix is designed to make a balance between accuracy and
training expenditure on memory. In addition, a parameter boosting strategy is
integrated to reinforce the precision with hash bits fusion. Extensive
experiments on three large-scale image benchmarks demonstrate the superior
performance of RSLH under various short-length hashing scenarios.
Related papers
- Deep Lifelong Cross-modal Hashing [17.278818467305683]
We propose a novel deep lifelong cross-modal hashing to achieve lifelong hashing retrieval instead of re-training hash function repeatedly.
Specifically, we design lifelong learning strategy to update hash functions by directly training the incremental data instead of retraining new hash functions using all the accumulated data.
It yields substantial average over 20% in retrieval accuracy and almost reduces over 80% training time when new data arrives continuously.
arXiv Detail & Related papers (2023-04-26T07:56:22Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
We propose an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing.
We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search.
We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH.
arXiv Detail & Related papers (2021-03-26T13:33:48Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Deep Hashing with Hash-Consistent Large Margin Proxy Embeddings [65.36757931982469]
Image hash codes are produced by binarizing embeddings of convolutional neural networks (CNN) trained for either classification or retrieval.
The use of a fixed set of proxies (weights of the CNN classification layer) is proposed to eliminate this ambiguity.
The resulting hash-consistent large margin (HCLM) proxies are shown to encourage saturation of hashing units, thus guaranteeing a small binarization error.
arXiv Detail & Related papers (2020-07-27T23:47:43Z) - Generative Semantic Hashing Enhanced via Boltzmann Machines [61.688380278649056]
Existing generative-hashing methods mostly assume a factorized form for the posterior distribution.
We propose to employ the distribution of Boltzmann machine as the retrievalal posterior.
We show that by effectively modeling correlations among different bits within a hash code, our model can achieve significant performance gains.
arXiv Detail & Related papers (2020-06-16T01:23:39Z) - Procrustean Orthogonal Sparse Hashing [3.302605292858623]
We show that insect olfaction is structurally and functionally analogous to sparse hashing.
We present a novel method, Procrustean Orthogonal Sparse Hashing (POSH), that unifies these findings.
We propose two new methods, Binary OSL and SphericalHash, to address these deficiencies.
arXiv Detail & Related papers (2020-06-08T18:09:33Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
We propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval.
We first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label.
To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the $ellinfty$ restriction on the perturbation.
arXiv Detail & Related papers (2020-04-15T08:36:58Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
Adversarial autoencoders are shown to be able to implicitly learn a robust, locality-preserving hash function that generates balanced and high-quality hash codes.
The existing adversarial hashing methods are inefficient to be employed for large-scale image retrieval applications.
We propose a new adversarial-autoencoder hashing approach that has a much lower sample requirement and computational cost.
arXiv Detail & Related papers (2020-02-29T00:22:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.