論文の概要: A Robust Interpretable Deep Learning Classifier for Heart Anomaly
Detection Without Segmentation
- arxiv url: http://arxiv.org/abs/2005.10480v2
- Date: Tue, 29 Sep 2020 06:42:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 00:11:18.409429
- Title: A Robust Interpretable Deep Learning Classifier for Heart Anomaly
Detection Without Segmentation
- Title(参考訳): セグメンテーションのない心臓異常検出のためのロバスト解釈型ディープラーニング分類器
- Authors: Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Sridha
Sridharan, Houman Ghaemmaghami, Clinton Fookes
- Abstract要約: 心音分類の先行段階として, 心音分節の重要性を論じる。
次に,心臓の異常音検出のための頑健な分類器を提案する。
我々の新しい分類器はまた、広く使われているPhyloNetデータセットでほぼ100%の精度で、堅牢で安定しており、最も重要な説明が可能であることも示されています。
- 参考スコア(独自算出の注目度): 37.70077538403524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditionally, abnormal heart sound classification is framed as a three-stage
process. The first stage involves segmenting the phonocardiogram to detect
fundamental heart sounds; after which features are extracted and classification
is performed. Some researchers in the field argue the segmentation step is an
unwanted computational burden, whereas others embrace it as a prior step to
feature extraction. When comparing accuracies achieved by studies that have
segmented heart sounds before analysis with those who have overlooked that
step, the question of whether to segment heart sounds before feature extraction
is still open. In this study, we explicitly examine the importance of heart
sound segmentation as a prior step for heart sound classification, and then
seek to apply the obtained insights to propose a robust classifier for abnormal
heart sound detection. Furthermore, recognizing the pressing need for
explainable Artificial Intelligence (AI) models in the medical domain, we also
unveil hidden representations learned by the classifier using model
interpretation techniques. Experimental results demonstrate that the
segmentation plays an essential role in abnormal heart sound classification.
Our new classifier is also shown to be robust, stable and most importantly,
explainable, with an accuracy of almost 100% on the widely used PhysioNet
dataset.
- Abstract(参考訳): 伝統的に、異常な心臓音の分類は3段階のプロセスである。
第1段階では、心電図を分割して基本的な心臓音を検出し、その後特徴を抽出して分類する。
この分野の研究者の中には、セグメンテーションのステップは望ましくない計算負荷であると主張する者もいれば、特徴抽出の前段階として受け入れる者もいる。
分析の前に心臓の音を分割した研究で得られた精度を、そのステップを見落としているものと比較すると、特徴抽出の前に心臓の音をセグメント化するかどうかという問題は未解決のままである。
本研究では,心音分類の前段階として,心音分割の重要性を明示的に検討し,得られた知見を応用し,異常心音検出のためのロバスト分類器を提案する。
さらに、医療領域における説明可能な人工知能(AI)モデルの必要性を認識し、モデル解釈技術を用いて分類器が学習した隠れ表現を明らかにする。
実験の結果, セグメンテーションは心音の異常分類において重要な役割を担っていることがわかった。
新しい分類器は、ロバストで安定で、最も重要な説明が可能で、広く使われている物理式データセット上でほぼ100%正確であることが示されています。
関連論文リスト
- View Classification and Object Detection in Cardiac Ultrasound to
Localize Valves via Deep Learning [0.0]
本稿では、ディープニューラルネットワークを用いて、分類とローカライゼーションのステップを分離する機械学習パイプラインを提案する。
パイプラインの第1ステップとして,心の解剖学的所見が10個ある心エコー図にビュー分類を適用した。
第2のステップでは、深層学習に基づく物体検出をバルブの局所化と識別の両方に応用する。
論文 参考訳(メタデータ) (2023-10-31T18:16:02Z) - A Comprehensive Survey on Heart Sound Analysis in the Deep Learning Era [54.53921568420471]
心血管疾患の早期スクリーニングにおける臨床応用として, 心臓音聴診が有用である。
ディープラーニングは多くの研究分野で古典的な機械学習よりも優れています。
論文 参考訳(メタデータ) (2023-01-23T10:58:45Z) - A Causal Intervention Scheme for Semantic Segmentation of Quasi-periodic
Cardiovascular Signals [7.182731690965173]
フレームレベルのコントラスト的枠組みの下で,新たなトレーニングパラダイムを形成するために,コントラスト的因果介入(CCI)を提案する。
この介入は、単一の属性によってもたらされる暗黙の統計的バイアスを排除し、より客観的な表現につながる。
論文 参考訳(メタデータ) (2022-09-19T13:54:51Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z) - Segmentation-free Heart Pathology Detection Using Deep Learning [12.065014651638943]
本研究では,新しいセグメンテーションフリー心音分類法を提案する。
具体的には、離散ウェーブレット変換を用いて信号をノイズ化し、続いて特徴抽出と特徴量削減を行う。
サポートベクトルマシンとディープニューラルネットワークは分類に使用される。
論文 参考訳(メタデータ) (2021-08-09T16:09:30Z) - A Visual Domain Transfer Learning Approach for Heartbeat Sound
Classification [0.0]
心臓病は人間の死亡の最も一般的な理由であり、世界中で約3分の1が死亡している。
疾患の早期発見は患者の生存率を高め、心臓病の徴候を早期に検出する方法がいくつかある。
本研究は、クリーン化および正規化された心音を視覚メルスケールスペクトログラムに変換し、視覚領域変換学習手法を用いて、心音の特徴を自動的に抽出し分類することを提案する。
論文 参考訳(メタデータ) (2021-07-28T09:41:38Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。