論文の概要: Joint Detection and Tracking in Videos with Identification Features
- arxiv url: http://arxiv.org/abs/2005.10905v2
- Date: Mon, 25 May 2020 11:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:48:13.403063
- Title: Joint Detection and Tracking in Videos with Identification Features
- Title(参考訳): 識別機能付きビデオにおける共同検出と追跡
- Authors: Bharti Munjal, Abdul Rafey Aftab, Sikandar Amin, Meltem D.
Brandlmaier, Federico Tombari, Fabio Galasso
- Abstract要約: 本稿では,ビデオ検出,追跡,再識別機能の最初の共同最適化を提案する。
提案手法はMOTの最先端に到達し,オンライントラッカーにおけるUA-DETRAC'18追跡課題のうち,第1位,第3位にランクインした。
- 参考スコア(独自算出の注目度): 36.55599286568541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have shown that combining object detection and tracking tasks,
in the case of video data, results in higher performance for both tasks, but
they require a high frame-rate as a strict requirement for performance. This is
assumption is often violated in real-world applications, when models run on
embedded devices, often at only a few frames per second.
Videos at low frame-rate suffer from large object displacements. Here
re-identification features may support to match large-displaced object
detections, but current joint detection and re-identification formulations
degrade the detector performance, as these two are contrasting tasks. In the
real-world application having separate detector and re-id models is often not
feasible, as both the memory and runtime effectively double.
Towards robust long-term tracking applicable to reduced-computational-power
devices, we propose the first joint optimization of detection, tracking and
re-identification features for videos. Notably, our joint optimization
maintains the detector performance, a typical multi-task challenge. At
inference time, we leverage detections for tracking (tracking-by-detection)
when the objects are visible, detectable and slowly moving in the image. We
leverage instead re-identification features to match objects which disappeared
(e.g. due to occlusion) for several frames or were not tracked due to fast
motion (or low-frame-rate videos). Our proposed method reaches the
state-of-the-art on MOT, it ranks 1st in the UA-DETRAC'18 tracking challenge
among online trackers, and 3rd overall.
- Abstract(参考訳): 近年の研究では、オブジェクト検出と追跡タスクを組み合わせることで、ビデオデータの場合、両方のタスクのパフォーマンスが向上するが、パフォーマンスの厳しい要件としてフレームレートが高いことが示されている。
これは、モデルが組み込みデバイス上で動作し、1秒間に数フレームしか持たない場合に、現実世界のアプリケーションでしばしば違反する仮定である。
フレームレートの低いビデオは、大きな物体の変位に苦しむ。
ここでの再識別機能は、大きな変位物体の検出にマッチするが、現在の関節検出と再同定の定式化は、これら2つが対照的なタスクであるため、検出器の性能を低下させる。
実世界のアプリケーションでは、メモリとランタイムの両方が効果的に2倍になるため、分離された検出器とリIDモデルを持つ場合、しばしば実現不可能である。
本稿では,低消費電力デバイスに適用可能な堅牢な長期追跡に向けて,ビデオの検出,追跡,再識別機能の最初の共同最適化を提案する。
特に、我々の共同最適化は、典型的なマルチタスクチャレンジである検出器性能を維持している。
推定時には、物体が見えて、検出可能で、画像内でゆっくりと移動する時の追跡(検出による追跡)に検出を利用する。
代わりに、複数のフレームで消えたオブジェクト(例えば、オクルージョン)や、高速モーション(または低フレームレートビデオ)のために追跡されなかったオブジェクトとマッチングするために再識別機能を利用する。
提案手法はMOTの最先端に到達し,オンライントラッカーにおけるUA-DETRAC'18追跡課題の1位,総合3位となった。
関連論文リスト
- ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
本研究では,多目的追跡のための双方向マッチングアルゴリズムを提案する。
ストランド領域はマッチングアルゴリズムで使われ、追跡できないオブジェクトを一時的に保存する。
MOT17チャレンジでは、提案アルゴリズムは63.4%のMOTA、55.3%のIDF1、20.1のFPS追跡速度を達成した。
論文 参考訳(メタデータ) (2023-03-15T08:38:08Z) - Tracking by Associating Clips [110.08925274049409]
本稿では,オブジェクト関連をクリップワイドマッチングとして扱う方法を検討する。
我々の新しい視点では、1つの長いビデオシーケンスを複数のショートクリップとみなし、そのトラックはクリップ内とクリップ間の両方で実行される。
この新しい手法の利点は2つある。まず、ビデオチャンキングによって中断フレームをバイパスできるため、エラーの蓄積や伝播の追跡に頑健である。
次に、クリップワイドマッチング中に複数のフレーム情報を集約し、現在のフレームワイドマッチングよりも高精度な長距離トラックアソシエーションを実現する。
論文 参考訳(メタデータ) (2022-12-20T10:33:17Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - Finding a Needle in a Haystack: Tiny Flying Object Detection in 4K
Videos using a Joint Detection-and-Tracking Approach [19.59528430884104]
本稿では,検出と追跡を共同で行うrecurrent correlational networkと呼ばれるニューラルネットワークモデルを提案する。
鳥や無人航空機などの小さな飛行物体の画像を含むデータセットを用いた実験では、提案手法は一貫した改善をもたらした。
我々のネットワークは、鳥の画像データセットのトラッカーとして評価されたとき、最先端の汎用オブジェクトトラッカと同様に機能します。
論文 参考訳(メタデータ) (2021-05-18T03:22:03Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Detecting Invisible People [58.49425715635312]
我々は,追跡ベンチマークを再利用し,目立たない物体を検出するための新しい指標を提案する。
私たちは、現在の検出および追跡システムがこのタスクで劇的に悪化することを実証します。
第2に,最先端の単眼深度推定ネットワークによる観測結果を用いて,3次元で明示的に推論する動的モデルを構築した。
論文 参考訳(メタデータ) (2020-12-15T16:54:45Z) - Robust and efficient post-processing for video object detection [9.669942356088377]
この研究は、従来の後処理メソッドの制限を克服する、新しい後処理パイプラインを導入している。
本手法は,特に高速移動物体に関する最先端の映像検出器の結果を改善する。
そして、YOLOのような効率的な静止画像検出器に適用することで、より計算集約的な検出器に匹敵する結果が得られる。
論文 参考訳(メタデータ) (2020-09-23T10:47:24Z) - IA-MOT: Instance-Aware Multi-Object Tracking with Motion Consistency [40.354708148590696]
IA-MOT(Instance-Aware MOT)は、静止カメラまたは移動カメラで複数の物体を追跡できる。
提案手法は,CVPR 2020ワークショップにおけるBMTTチャレンジのトラック3で優勝した。
論文 参考訳(メタデータ) (2020-06-24T03:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。