論文の概要: Investigating Vulnerability to Adversarial Examples on Multimodal Data
Fusion in Deep Learning
- arxiv url: http://arxiv.org/abs/2005.10987v1
- Date: Fri, 22 May 2020 03:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 09:26:58.544232
- Title: Investigating Vulnerability to Adversarial Examples on Multimodal Data
Fusion in Deep Learning
- Title(参考訳): 深層学習におけるマルチモーダルデータ融合の逆例に対する脆弱性の検討
- Authors: Youngjoon Yu, Hong Joo Lee, Byeong Cheon Kim, Jung Uk Kim, Yong Man Ro
- Abstract要約: 本研究では,現在のマルチモーダル核融合モデルが相補的インテリジェンスを利用して敵攻撃を防いでいるかを検討した。
予測精度の向上のために最適化されたマルチモーダル融合モデルは, たとえ1つのセンサのみを攻撃しても, 敵攻撃に対して脆弱であることを確認した。
- 参考スコア(独自算出の注目度): 32.125310341415755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of multimodal data fusion in deep learning appears to be
attributed to the use of complementary in-formation between multiple input
data. Compared to their predictive performance, relatively less attention has
been devoted to the robustness of multimodal fusion models. In this paper, we
investigated whether the current multimodal fusion model utilizes the
complementary intelligence to defend against adversarial attacks. We applied
gradient based white-box attacks such as FGSM and PGD on MFNet, which is a
major multispectral (RGB, Thermal) fusion deep learning model for semantic
segmentation. We verified that the multimodal fusion model optimized for better
prediction is still vulnerable to adversarial attack, even if only one of the
sensors is attacked. Thus, it is hard to say that existing multimodal data
fusion models are fully utilizing complementary relationships between multiple
modalities in terms of adversarial robustness. We believe that our observations
open a new horizon for adversarial attack research on multimodal data fusion.
- Abstract(参考訳): 深層学習におけるマルチモーダルデータ融合の成功は、複数の入力データ間の相補的インフォームの利用によるものと考えられる。
予測性能と比較して、マルチモーダル融合モデルの堅牢性には比較的注意が向けられていない。
本稿では,現在のマルチモーダル融合モデルが相補的インテリジェンスを利用して敵攻撃を防いでいるかを検討した。
セマンティックセグメンテーションのための多スペクトル(RGB,熱)融合深層学習モデルであるMFNet上で,FGSMやPGDなどの勾配に基づくホワイトボックス攻撃を適用した。
予測精度の向上のために最適化されたマルチモーダル融合モデルは, たとえ1つのセンサのみを攻撃しても, 敵攻撃に対して脆弱であることを確認した。
したがって、既存のマルチモーダルデータ融合モデルは、対角的堅牢性の観点から、複数のモーダル間の相補的関係を完全に活用しているとは言い難い。
我々は,マルチモーダルデータ融合における敵攻撃研究の新たな地平を開くと考えている。
関連論文リスト
- MMLF: Multi-modal Multi-class Late Fusion for Object Detection with Uncertainty Estimation [13.624431305114564]
本稿では,マルチクラス検出が可能なレイトフュージョンのための先駆的マルチモーダル・マルチクラスレイトフュージョン法を提案する。
KITTI検証と公式テストデータセットで実施された実験は、大幅なパフォーマンス改善を示している。
我々のアプローチでは、不確実性分析を分類融合プロセスに組み込んで、モデルをより透明で信頼性の高いものにします。
論文 参考訳(メタデータ) (2024-10-11T11:58:35Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semanticsを紹介する。
我々は,グローバルな特徴とローカルな特徴の効果的な抽出と統合を保証するために,複数のスケールで機能融合を採用している。
実験により,本手法は複数のデータセットにまたがって優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-24T08:58:48Z) - Deep Equilibrium Multimodal Fusion [88.04713412107947]
多重モーダル融合は、複数のモーダルに存在する相補的な情報を統合し、近年多くの注目を集めている。
本稿では,動的多モード核融合プロセスの固定点を求めることにより,多モード核融合に対する新しいDeep equilibrium (DEQ)法を提案する。
BRCA,MM-IMDB,CMU-MOSI,SUN RGB-D,VQA-v2の実験により,DEC融合の優位性が示された。
論文 参考訳(メタデータ) (2023-06-29T03:02:20Z) - Provable Dynamic Fusion for Low-Quality Multimodal Data [94.39538027450948]
動的マルチモーダル融合は、有望な学習パラダイムとして現れる。
広く使われているにもかかわらず、この分野の理論的正当化は依然として顕著に欠落している。
本稿では、一般化の観点から最もポピュラーなマルチモーダル融合フレームワークの下で、この問題に答える理論的理解を提供する。
QMF(Quality-Aware Multimodal Fusion)と呼ばれる新しいマルチモーダル融合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-03T08:32:35Z) - Informative Data Selection with Uncertainty for Multi-modal Object
Detection [25.602915381482468]
普遍的不確実性を考慮したマルチモーダル融合モデルを提案する。
本モデルでは,融合時のランダム性を低減し,信頼性の高い出力を生成する。
我々の核融合モデルでは、ガウス、運動のぼやけ、凍土のような激しいノイズ干渉に対してわずかにしか耐えられないことが証明されている。
論文 参考訳(メタデータ) (2023-04-23T16:36:13Z) - Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content
Dilutions [27.983902791798965]
画像と既存のテキストとの関連性やトピックのコヒーレンスを維持する希釈テキストを生成するモデルを開発する。
その結果,タスク固有の融合型マルチモーダル分類器の性能はそれぞれ23.3%,22.5%低下することがわかった。
我々の研究は、深いマルチモーダルモデルの現実的な変動に対する堅牢性について、さらなる研究をハイライトし、奨励することを目的としている。
論文 参考訳(メタデータ) (2022-11-04T17:58:02Z) - Understanding and Measuring Robustness of Multimodal Learning [14.257147031953211]
MUROANと呼ばれるフレームワークを用いて,マルチモーダル学習の対角的堅牢性を総合的に測定する。
まず、MUROANにおけるマルチモーダルモデルの統一ビューを示し、マルチモーダルモデルの融合機構を鍵となる脆弱性として同定する。
次に,MUROANにおけるデカップリング攻撃(decoupling attack)と呼ばれる,マルチモーダルモデルの妥協を目的とした新しいタイプのマルチモーダル敵攻撃を導入する。
論文 参考訳(メタデータ) (2021-12-22T21:10:02Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - Multimodal Object Detection via Bayesian Fusion [59.31437166291557]
我々は、RGBとサーマルカメラでマルチモーダルオブジェクト検出を研究します。後者は照明不良下ではるかに強力なオブジェクトシグネチャを提供することができます。
我々の重要な貢献は、異なるモードのボックス検出を融合する非学習遅延融合法である。
このアプローチは、整列(KAIST)と非整列(FLIR)のマルチモーダルセンサーデータを含むベンチマークに適用されます。
論文 参考訳(メタデータ) (2021-04-07T04:03:20Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。