論文の概要: Interacting with Explanations through Critiquing
- arxiv url: http://arxiv.org/abs/2005.11067v4
- Date: Wed, 12 Jan 2022 17:07:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 08:13:41.936781
- Title: Interacting with Explanations through Critiquing
- Title(参考訳): 批判を通した説明のやり取り
- Authors: Diego Antognini and Claudiu Musat and Boi Faltings
- Abstract要約: 本稿では,レビューテキストからレコメンデーションのパーソナライズされた説明を生成する手法を提案する。
我々は,最先端技術による説明よりも,人間の方がこれらの説明をはるかに好んでいることを示す。
私たちの仕事の最も重要なイノベーションは、ユーザーがテキストの説明を批判することでレコメンデーションに反応できることです。
- 参考スコア(独自算出の注目度): 40.69540222716043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using personalized explanations to support recommendations has been shown to
increase trust and perceived quality. However, to actually obtain better
recommendations, there needs to be a means for users to modify the
recommendation criteria by interacting with the explanation. We present a novel
technique using aspect markers that learns to generate personalized
explanations of recommendations from review texts, and we show that human users
significantly prefer these explanations over those produced by state-of-the-art
techniques. Our work's most important innovation is that it allows users to
react to a recommendation by critiquing the textual explanation: removing
(symmetrically adding) certain aspects they dislike or that are no longer
relevant (symmetrically that are of interest). The system updates its user
model and the resulting recommendations according to the critique. This is
based on a novel unsupervised critiquing method for single- and multi-step
critiquing with textual explanations. Experiments on two real-world datasets
show that our system is the first to achieve good performance in adapting to
the preferences expressed in multi-step critiquing.
- Abstract(参考訳): パーソナライズされた説明を使ってレコメンデーションをサポートすることは、信頼と品質を高めることが示されている。
しかし、実際により良いレコメンデーションを得るためには、ユーザが説明と対話してレコメンデーション基準を変更する手段が必要である。
本稿では,レビューテキストからレコメンデーションのパーソナライズされた説明を生成するアスペクトマーカーを用いた新しい手法を提案する。
私たちの仕事の最も重要なイノベーションは、テキスト的な説明を批判することで、ユーザが推奨に反応できることです。
システムは、ユーザーモデルと結果のレコメンデーションを批判に従って更新する。
これは、テキストによる説明を伴う単段・多段の非教師なし格付け手法に基づいている。
実世界の2つのデータセットにおける実験により,多段階評価で表現された選好に適合する性能を初めて達成したことを示す。
関連論文リスト
- Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - Explainable Recommender with Geometric Information Bottleneck [25.703872435370585]
本稿では,ユーザ-イテム相互作用から学習した幾何学的事前学習を変分ネットワークに組み込むことを提案する。
個々のユーザとイテムペアからの遅延因子は、レコメンデーションと説明生成の両方に使用することができる。
3つの電子商取引データセットの実験結果から,我々のモデルは変分レコメンデータの解釈可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-05-09T10:38:36Z) - Reinforced Path Reasoning for Counterfactual Explainable Recommendation [10.36395995374108]
本稿では,項目属性に基づく反現実的説明を生成するために,CERec を新たに提案する。
我々は、与えられた知識グラフのリッチなコンテキスト情報を用いて、適応経路サンプリング器を用いて巨大な探索空間を縮小する。
論文 参考訳(メタデータ) (2022-07-14T05:59:58Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Explainability in Music Recommender Systems [69.0506502017444]
音楽レコメンダシステム(MRS)の文脈における説明可能性について論じる。
MRSは非常に複雑で、推奨精度に最適化されることが多い。
本稿では、MSSに説明可能性コンポーネントを組み込む方法と、どのようなフォーム説明を提供するかを示す。
論文 参考訳(メタデータ) (2022-01-25T18:32:11Z) - Counterfactual Explainable Recommendation [22.590877963169103]
本稿では、因果推論から反実的推論の洞察を取り入れて説明可能な推薦を行うCountERを提案する。
CountERは、モデル決定に対して単純(低複雑性)で効果的な(高強度)説明を求める。
以上の結果から,我々のモデルは,最先端のレコメンデーションモデルよりも正確かつ効果的に説明できることを示す。
論文 参考訳(メタデータ) (2021-08-24T06:37:57Z) - ELIXIR: Learning from User Feedback on Explanations to Improve
Recommender Models [26.11434743591804]
説明に対するユーザフィードバックをユーザ好みのペアワイズ学習に活用する,ループ内人間フレームワーク ELIXIR を考案した。
elixirは、レコメンデーションと説明のペアに対するフィードバックを活用して、ユーザ固有の潜在選好ベクトルを学習する。
このフレームワークは、ランダムウォークとリスタートによる一般化グラフレコメンデーションを用いてインスタンス化される。
論文 参考訳(メタデータ) (2021-02-15T13:43:49Z) - Explanation as a Defense of Recommendation [34.864709791648195]
提案とそれに対応する説明の間の感情整合のアイデアを強制することを提案する。
当社のソリューションは、推奨タスクと説明タスクの両方で豊富なベースラインを上回っています。
論文 参考訳(メタデータ) (2021-01-24T06:34:36Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。