論文の概要: Machine Learning in the Internet of Things for Industry 4.0
- arxiv url: http://arxiv.org/abs/2005.11146v1
- Date: Fri, 22 May 2020 12:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 09:51:22.840075
- Title: Machine Learning in the Internet of Things for Industry 4.0
- Title(参考訳): internet of things for industry 4.0における機械学習
- Authors: Tomasz Szydlo, Joanna Sendorek, Robert Brzoza-Woch, Mateusz Windak
- Abstract要約: このようなシステムの組織化は,ハードウェア層からソフトウェア層まで,さらにはIoTシステムに必要な応答時間に至るまで,処理スタック全体に依存することを示す。
本稿では,このようなシステムのフロー処理スタックと,エッジやクラウド上での学習や推論の拡散を可能にする,組織的な機械学習アーキテクチャパターンを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Number of IoT devices is constantly increasing which results in greater
complexity of computations and high data velocity. One of the approach to
process sensor data is dataflow programming. It enables the development of
reactive software with short processing and rapid response times, especially
when moved to the edge of the network. This is especially important in systems
that utilize online machine learning algorithms to analyze ongoing processes
such as those observed in Industry 4.0. In this paper, we show that
organization of such systems depends on the entire processing stack, from the
hardware layer all the way to the software layer, as well as on the required
response times of the IoT system. We propose a flow processing stack for such
systems along with the organizational machine learning architectural patterns
that enable the possibility to spread the learning and inferencing on the edge
and the cloud. In the paper, we analyse what latency is introduced by
communication technologies used in the IoT for cloud connectivity and how they
influence the response times of the system. Finally, we are providing
recommendations which machine learning patterns should be used in the IoT
systems depending on the application type.
- Abstract(参考訳): IoTデバイスの数は絶えず増加しており、計算の複雑さとデータ速度が増大している。
センサデータを処理するアプローチの1つは、データフロープログラミングである。
これは、特にネットワークの端に移動したときに、短い処理と迅速な応答時間を備えたリアクティブソフトウェアの開発を可能にする。
これは、オンライン機械学習アルゴリズムを使用して業界4.0で見られるような進行中のプロセスを分析するシステムにおいて特に重要である。
本稿では,このようなシステムの構成が,ハードウェア層からソフトウェア層に至るまでの処理スタック全体と,iotシステムの要求される応答時間に依存することを示す。
本稿では,このようなシステムのフロー処理スタックと,エッジやクラウド上での学習や推論の拡散を可能にする,組織的な機械学習アーキテクチャパターンを提案する。
本稿では,IoTでクラウド接続に使用される通信技術が導入するレイテンシと,それらがシステムの応答時間に与える影響について分析する。
最後に、アプリケーションの種類に応じて、IoTシステムで使用する機械学習パターンを推奨しています。
関連論文リスト
- Give and Take: Federated Transfer Learning for Industrial IoT Network
Intrusion Detection [3.7498611358320733]
IIoTネットワーク侵入検出のためのフェデレートトランスファーラーニング(FTL)手法を提案する。
本研究の一環として,FTLの実行の中心となる組み合わせ型ニューラルネットワークを提案する。
結果は、IIoTクライアントとサーバの両方のイテレーション間のFTLセットアップのパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-10-11T10:11:54Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
フェデレートラーニング(FL)は,ネットワークエッジ上での分散ディープラーニングのプライバシ強化を実現する上で,有効なテクニックとなっている。
本稿では,既存のFLベンチマークを補完するFLEdgeを提案する。
論文 参考訳(メタデータ) (2023-06-08T13:11:20Z) - Enable Deep Learning on Mobile Devices: Methods, Systems, and
Applications [46.97774949613859]
ディープニューラルネットワーク(DNN)は人工知能(AI)分野において前例のない成功を収めた
しかし、それらの優れた性能は、計算の複雑さのかなりのコストを伴っている。
本稿では,効率的なディープラーニング手法,システム,応用について概説する。
論文 参考訳(メタデータ) (2022-04-25T16:52:48Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - An Automated Data Engineering Pipeline for Anomaly Detection of IoT
Sensor Data [0.0]
チップ技術、IoT(Internet of Things)、クラウドコンピューティング、人工知能といったシステムが、現在の問題を解決する可能性を高めている。
データ分析と機械学習/ディープラーニングの使用により、基盤となるパターンを学習し、IoTセンサから生成された大量のデータから何を学んだかに基づいて決定することができる。
プロセスにはIoTセンサ、Raspberry Pi、Amazon Web Services(AWS)、スマートホームセキュリティシステムの異常なケースを特定するための複数の機械学習技術の使用が含まれる。
論文 参考訳(メタデータ) (2021-09-28T15:57:29Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
モノのインターネット(IIoT)は、モノのインターネット技術を産業環境に統合することで、将来の製造施設に革命をもたらします。
大規模なIIoTデバイスのデプロイでは、無線ネットワークがさまざまなQoS(Quality-of-Service)要件でユビキタス接続をサポートすることは困難である。
まず、一般的な非クリティカルかつクリティカルなIIoTユースケースの要件を要約します。
次に、大規模なIIoTシナリオと対応する機械学習ソリューションのユニークな特性を、その制限と潜在的な研究方向で識別します。
論文 参考訳(メタデータ) (2021-03-10T20:10:53Z) - Real-time Neural Networks Implementation Proposal for Microcontrollers [0.0]
本稿では,マルチレイヤ・パーセプトロン(MLP)型ニューラルネットワークの実装戦略を低コストで低消費電力なプラットフォームで示すことを目的とする。
完全な分類プロセスを備えたモジュール型マトリックスベースのマイクロコントローラが実装され、マイクロコントローラのバックプロパゲーショントレーニングも行われた。
テストと検証は、トレーニングプロセスの平均正方形誤差(MSE)のハードウェア・イン・ザ・ループ(HIL)、分類結果、各実装モジュールの処理時間を通じて行われた。
論文 参考訳(メタデータ) (2020-06-08T03:51:14Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。