One of these (Few) Things is Not Like the Others
- URL: http://arxiv.org/abs/2005.11405v1
- Date: Fri, 22 May 2020 21:49:35 GMT
- Title: One of these (Few) Things is Not Like the Others
- Authors: Nat Roth, Justin Wagle
- Abstract summary: We propose a model which can both classify new images based on a small number of examples and recognize images which do not belong to any previously seen group.
We evaluate performance over a spectrum of model architectures, including setups small enough to be run on low powered devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To perform well, most deep learning based image classification systems
require large amounts of data and computing resources. These constraints make
it difficult to quickly personalize to individual users or train models outside
of fairly powerful machines. To deal with these problems, there has been a
large body of research into teaching machines to learn to classify images based
on only a handful of training examples, a field known as few-shot learning.
Few-shot learning research traditionally makes the simplifying assumption that
all images belong to one of a fixed number of previously seen groups. However,
many image datasets, such as a camera roll on a phone, will be noisy and
contain images that may not be relevant or fit into any clear group. We propose
a model which can both classify new images based on a small number of examples
and recognize images which do not belong to any previously seen group. We adapt
previous few-shot learning work to include a simple mechanism for learning a
cutoff that determines whether an image should be excluded or classified. We
examine how well our method performs in a realistic setting, benchmarking the
approach on a noisy and ambiguous dataset of images. We evaluate performance
over a spectrum of model architectures, including setups small enough to be run
on low powered devices, such as mobile phones or web browsers. We find that
this task of excluding irrelevant images poses significant extra difficulty
beyond that of the traditional few-shot task. We decompose the sources of this
error, and suggest future improvements that might alleviate this difficulty.
Related papers
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
An increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data.
We exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images.
We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures.
arXiv Detail & Related papers (2024-10-13T16:34:46Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - One-Shot Image Restoration [0.0]
Experimental results demonstrate the applicability, robustness and computational efficiency of the proposed approach for supervised image deblurring and super-resolution.
Our results showcase significant improvement of learning models' sample efficiency, generalization and time complexity.
arXiv Detail & Related papers (2024-04-26T14:03:23Z) - Mixture of Self-Supervised Learning [2.191505742658975]
Self-supervised learning works by using a pretext task which will be trained on the model before being applied to a specific task.
Previous studies have only used one type of transformation as a pretext task.
This raises the question of how it affects if more than one pretext task is used and to use a gating network to combine all pretext tasks.
arXiv Detail & Related papers (2023-07-27T14:38:32Z) - Enhance Images as You Like with Unpaired Learning [8.104571453311442]
We propose a lightweight one-path conditional generative adversarial network (cGAN) to learn a one-to-many relation from low-light to normal-light image space.
Our network learns to generate a collection of enhanced images from a given input conditioned on various reference images.
Our model achieves competitive visual and quantitative results on par with fully supervised methods on both noisy and clean datasets.
arXiv Detail & Related papers (2021-10-04T03:00:44Z) - LibFewShot: A Comprehensive Library for Few-shot Learning [78.58842209282724]
Few-shot learning, especially few-shot image classification, has received increasing attention and witnessed significant advances in recent years.
Some recent studies implicitly show that many generic techniques or tricks, such as data augmentation, pre-training, knowledge distillation, and self-supervision, may greatly boost the performance of a few-shot learning method.
We propose a comprehensive library for few-shot learning (LibFewShot) by re-implementing seventeen state-of-the-art few-shot learning methods in a unified framework with the same single intrinsic in PyTorch.
arXiv Detail & Related papers (2021-09-10T14:12:37Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - One-Shot Image Classification by Learning to Restore Prototypes [11.448423413463916]
One-shot image classification aims to train image classifiers over the dataset with only one image per category.
For one-shot learning, the existing metric learning approaches would suffer poor performance because the single training image may not be representative of the class.
We propose a simple yet effective regression model, denoted by RestoreNet, which learns a class transformation on the image feature to move the image closer to the class center in the feature space.
arXiv Detail & Related papers (2020-05-04T02:11:30Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.