Hyperfine interaction and coherence time of praseodymium ions at the
site 2 in yttrium orthosilicate
- URL: http://arxiv.org/abs/2005.11543v1
- Date: Sat, 23 May 2020 14:30:13 GMT
- Title: Hyperfine interaction and coherence time of praseodymium ions at the
site 2 in yttrium orthosilicate
- Authors: Yi-Xin Xiao, Zong-Quan Zhou, Yu Ma, Tian-Shu Yang, You-Zhi Ma,
Chuan-Feng Li, Guang-Can Guo
- Abstract summary: Praseodymium ions occupying the site 2 in Y$$SiO$_5$ crystal have better optical coherence as compared with those at site 1.
The magnetic fields with zero first order Zeeman shift in the hyperfine transition for Pr$3+$ at site 2 are identified.
- Score: 2.060414226322434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Praseodymium (Pr$^{3+}$) ions doped in the site 1 of yttrium orthosilicate
(Y$_2$SiO$_5$) has been widely employed as the photonic quantum memory due to
their excellent optical coherence and spin coherence. While praseodymium ions
occupying the site 2 in Y$_2$SiO$_5$ crystal have better optical coherence as
compared with those at site 1, which may enable better performance in quantum
memory. Here we experimentally characterize the hyperfine interactions of the
ground state $^3$H$_4$ and excited state $^1$D$_2$ of Pr$^{3+}$ at site 2 in
Y$_2$SiO$_5$ using Raman heterodyne detected nuclear magnetic resonance. The
Hamiltonians for the hyperfine interaction are reconstructed for both ground
state $^3$H$_4$ and excited state $^1$D$_2$ based on the Raman heterodyne
spectra in 201 magnetic fields. The two-pulse spin-echo coherence lifetime for
the ground state is measured to be 2.6$\pm$0.1 ms at site 2 with zero magnetic
field, which is more than five times longer than that at site 1. The magnetic
fields with zero first order Zeeman shift in the hyperfine transition for
Pr$^{3+}$ at site 2 in Y$_2$SiO$_5$ are identified.
Related papers
- Aggregate Frequency Width, Nuclear Hyperfine Coupling and Jahn-Teller Effect of $Cu^{2+}$ Impurity Ion ESR in $SrLaAlO_4$ Dielectric Resonator at $20$ Millikelvin [0.0]
impurity paramagnetic ion, $Cu2+$ substitutes $Al$ in the $SrLaAlO_4$ single crystal lattice.
The anisotropy of the hyperfine structure reveals a characteristics of static Jahn-Teller effect.
arXiv Detail & Related papers (2024-03-24T22:40:36Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Coherent optical-microwave interface for manipulation of low-field
electronic clock transitions in $^{171}$Yb$^{3+}$:Y$_2$SiO$_5$ [0.0]
coherent interaction of solid-state spins with both optical and microwave fields provides a platform for quantum technologies.
We use a loop-gap microwave resonator to coherently drive optical and microwave clock transitions over a long crystal.
We provide new insights into the spin dephasing mechanism at very low fields, showing that superhyperfine-induced collapse of the Hahn echo signal plays an important role at low fields.
arXiv Detail & Related papers (2022-09-09T09:19:28Z) - Laser Manipulation of Spin-Exchange Interaction Between Alkaline-Earth
Atoms in $^1$S$_0$ and $^3$P$_2$ States [14.119534067895096]
We show that due to the structure of alkaline-earth (like) atoms, the heating effects induced by the laser beams of our methods are very weak.
As a result, the Feshbach resonances, with which one can efficiently control the SEI by changing the laser intensity, may be induced by the laser beams with low-enough heating rate.
arXiv Detail & Related papers (2021-11-04T14:49:19Z) - A Raman heterodyne determination of the magnetic anisotropy for the
ground and optically excited states of Y$_{2}$SiO$_{5}$ doped with Sm$^{3+}$ [0.0]
We present the full magnetic g tensors of the $6$H$_5/2$Z$_1$ and $4$G$_5/2$A$_1$ electronic states for both crystallographic sites in Sm$3+$:Y$_2$SiO$_5$.
arXiv Detail & Related papers (2021-04-23T05:07:00Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.