Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values
- URL: http://arxiv.org/abs/2005.11627v1
- Date: Sun, 24 May 2020 00:17:15 GMT
- Title: Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values
- Authors: Zhiyong Cui, Ruimin Ke, Ziyuan Pu, Yinhai Wang
- Abstract summary: We focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models.
A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting.
We also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction.
- Score: 23.504633202965376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Short-term traffic forecasting based on deep learning methods, especially
recurrent neural networks (RNN), has received much attention in recent years.
However, the potential of RNN-based models in traffic forecasting has not yet
been fully exploited in terms of the predictive power of spatial-temporal data
and the capability of handling missing data. In this paper, we focus on
RNN-based models and attempt to reformulate the way to incorporate RNN and its
variants into traffic prediction models. A stacked bidirectional and
unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the
design of neural network structures for traffic state forecasting. As a key
component of the architecture, the bidirectional LSTM (BDLSM) is exploited to
capture the forward and backward temporal dependencies in spatiotemporal data.
To deal with missing values in spatial-temporal data, we also propose a data
imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation
unit to infer missing values and assist traffic prediction. The bidirectional
version of LSTM-I is incorporated in the SBU-LSTM architecture. Two real-world
network-wide traffic state datasets are used to conduct experiments and
published to facilitate further traffic prediction research. The prediction
performance of multiple types of multi-layer LSTM or BDLSTM models is
evaluated. Experimental results indicate that the proposed SBU-LSTM
architecture, especially the two-layer BDLSTM network, can achieve superior
performance for the network-wide traffic prediction in both accuracy and
robustness. Further, comprehensive comparison results show that the proposed
data imputation mechanism in the RNN-based models can achieve outstanding
prediction performance when the model's input data contains different patterns
of missing values.
Related papers
- ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry [0.0]
We present a novel hybrid deep learning model, named ConvLSTMTransNet, designed for time series prediction.
Our findings demonstrate that ConvLSTMTransNet significantly outperforms the baseline models by approximately 10% in terms of prediction accuracy.
arXiv Detail & Related papers (2024-09-20T03:12:57Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.
Our approach is capable of encoding neural networks in a model zoo of mixed architecture.
We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks [0.28675177318965034]
This study focuses on hybrid deep neural networks to predict traffic flow in the California Freeway Performance Measurement System (PeMS) with missing values.
Various architecture configurations with series and parallel connections are considered based on RNNs and CNNs.
A comprehensive analysis performed on two different datasets from PeMS indicates that the proposed series-parallel hybrid network with the mean imputation technique achieves the lowest error in predicting the traffic flow.
arXiv Detail & Related papers (2022-04-21T15:57:08Z) - Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM) [0.0]
This paper leverages diverse traffic state datasets from the Caltrans Performance Measurement System (PeMS) hosted on the open benchmark.
We integrate cell and hidden states from low-level to high-level Long Short-Term Memory (LSTM) networks with an attention pooling mechanism.
The developed hierarchical structure is designed to account for dependencies across different time scales, capturing the spatial-temporal correlations of network-level traffic states.
arXiv Detail & Related papers (2022-01-15T05:25:03Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
We propose a new LSTM variant called embedded convolutional LSTM (E NeuralTM)
In ETM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows.
We show the superiority of our proposed ETM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.
arXiv Detail & Related papers (2020-08-10T08:34:20Z) - Error-feedback stochastic modeling strategy for time series forecasting
with convolutional neural networks [11.162185201961174]
We propose a novel Error-feedback Modeling (ESM) strategy to construct a random Convolutional Network (ESM-CNN) Neural time series forecasting task.
The proposed ESM-CNN not only outperforms the state-of-art random neural networks, but also exhibits stronger predictive power and less computing overhead in comparison to trained state-of-art deep neural network models.
arXiv Detail & Related papers (2020-02-03T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.