Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks
- URL: http://arxiv.org/abs/2204.10222v1
- Date: Thu, 21 Apr 2022 15:57:08 GMT
- Title: Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks
- Authors: Mehdi Mehdipour Ghazi, Amin Ramezani, Mehdi Siahi, Mostafa Mehdipour
Ghazi
- Abstract summary: This study focuses on hybrid deep neural networks to predict traffic flow in the California Freeway Performance Measurement System (PeMS) with missing values.
Various architecture configurations with series and parallel connections are considered based on RNNs and CNNs.
A comprehensive analysis performed on two different datasets from PeMS indicates that the proposed series-parallel hybrid network with the mean imputation technique achieves the lowest error in predicting the traffic flow.
- Score: 0.28675177318965034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban traffic flow prediction using data-driven models can play an important
role in route planning and preventing congestion on highways. These methods
utilize data collected from traffic recording stations at different timestamps
to predict the future status of traffic. Hence, data collection, transmission,
storage, and extraction techniques can have a significant impact on the
performance of the traffic flow model. On the other hand, a comprehensive
database can provide the opportunity for using complex, yet reliable predictive
models such as deep learning methods. However, most of these methods have
difficulties in handling missing values and outliers. This study focuses on
hybrid deep neural networks to predict traffic flow in the California Freeway
Performance Measurement System (PeMS) with missing values. The proposed
networks are based on a combination of recurrent neural networks (RNNs) to
consider the temporal dependencies in the data recorded in each station and
convolutional neural networks (CNNs) to take the spatial correlations in the
adjacent stations into account. Various architecture configurations with series
and parallel connections are considered based on RNNs and CNNs, and several
prevalent data imputation techniques are used to examine the robustness of the
hybrid networks to missing values. A comprehensive analysis performed on two
different datasets from PeMS indicates that the proposed series-parallel hybrid
network with the mean imputation technique achieves the lowest error in
predicting the traffic flow and is robust to missing values up until 21%
missing ratio in both complete and incomplete training data scenarios when
applied to an incomplete test data.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Wavelet-Inspired Multiscale Graph Convolutional Recurrent Network for
Traffic Forecasting [0.0]
We propose a Graph Conal Recurrent Network (WavGCRN) which combines multiscale analysis (MSA)-based method with Deep Learning (DL)-based method.
The proposed method can offer well-defined interpretability, powerful learning capability, and competitive forecasting performance on real-world traffic data sets.
arXiv Detail & Related papers (2024-01-11T16:55:48Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Intrusion Detection using Spatial-Temporal features based on Riemannian
Manifold [1.14219428942199]
Network traffic data is a combination of different data bytes packets under different network protocols.
These traffic packets have complex time-varying non-linear relationships.
Existing state-of-the-art methods rise up to this challenge by fusing features into multiple subsets based on correlations.
This often requires high computational cost and manual support that limit them for real-time processing of network traffic.
arXiv Detail & Related papers (2021-10-31T23:50:59Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
Missing data imputation is common in intemporal traffic data collected from various sensing systems.
We present an efficient algorithm to obtain the optimal solution for each variable.
The proposed model also outperforms other baseline models in extreme missing scenarios.
arXiv Detail & Related papers (2020-03-23T13:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.