論文の概要: Arms Race in Adversarial Malware Detection: A Survey
- arxiv url: http://arxiv.org/abs/2005.11671v3
- Date: Tue, 31 Aug 2021 14:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 13:59:26.160731
- Title: Arms Race in Adversarial Malware Detection: A Survey
- Title(参考訳): 敵のマルウェア検出で腕を競う:調査
- Authors: Deqiang Li, Qianmu Li, Yanfang Ye and Shouhuai Xu
- Abstract要約: 悪意あるソフトウェア(マルウェア)は、機械学習(ML)技術に対処しなければならない主要なサイバー脅威である。
MLは敵例として知られる攻撃に対して脆弱である。
ディフェンダーの機能セットを知ることは、転送攻撃の成功に不可欠である。
敵の訓練の有効性は、最も強力な攻撃を識別するディフェンダーの能力に依存する。
- 参考スコア(独自算出の注目度): 33.8941961394801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malicious software (malware) is a major cyber threat that has to be tackled
with Machine Learning (ML) techniques because millions of new malware examples
are injected into cyberspace on a daily basis. However, ML is vulnerable to
attacks known as adversarial examples. In this paper, we survey and systematize
the field of Adversarial Malware Detection (AMD) through the lens of a unified
conceptual framework of assumptions, attacks, defenses, and security
properties. This not only leads us to map attacks and defenses to partial order
structures, but also allows us to clearly describe the attack-defense arms race
in the AMD context. We draw a number of insights, including: knowing the
defender's feature set is critical to the success of transfer attacks; the
effectiveness of practical evasion attacks largely depends on the attacker's
freedom in conducting manipulations in the problem space; knowing the
attacker's manipulation set is critical to the defender's success; the
effectiveness of adversarial training depends on the defender's capability in
identifying the most powerful attack. We also discuss a number of future
research directions.
- Abstract(参考訳): 悪意のあるソフトウェア(マルウェア)は、数百万の新しいマルウェアが毎日サイバースペースに注入されるため、機械学習(ML)技術に対処しなければならない主要なサイバー脅威である。
しかし、MLは敵例として知られる攻撃に対して脆弱である。
本稿では,想定,攻撃,防衛,セキュリティ特性の統一的な概念的枠組みのレンズを通して,AMD(Adversarial Malware Detection)の分野を調査し,体系化する。
これは、攻撃と防御を部分的な秩序構造にマッピングするだけでなく、AMDコンテキストにおける攻撃防御兵器レースを明確に記述することを可能にする。
攻撃者の特徴セットを知ることは転送攻撃の成功に不可欠である; 現実的な回避攻撃の有効性は、問題空間での操作を行う際の攻撃者の自由に大きく依存する; 攻撃者の操作セットを知ることは、ディフェンダーの成功に不可欠である; 敵の訓練の有効性は、最も強力な攻撃を特定することにおけるディフェンダーの能力に依存する。
今後の研究の方向性についても論じる。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Exploring Vulnerabilities and Protections in Large Language Models: A Survey [1.6179784294541053]
本稿では,Large Language Models (LLMs) のセキュリティ課題について検討する。
Prompt HackingとAdversarial Attacksの2つの主要分野に焦点を当てている。
これらのセキュリティ問題の詳細を明らかにすることで、この調査はレジリエントなAIシステム構築に関する広範な議論に貢献する。
論文 参考訳(メタデータ) (2024-06-01T00:11:09Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
A5$は、手元の入力に対する攻撃が失敗することを保証するために防御的摂動を構築するためのフレームワークである。
我々は,地上の真理ラベルを無視するロバスト化ネットワークを用いて,実機での防御強化を効果的に示す。
また、A5$を適用して、確実に堅牢な物理オブジェクトを作成する方法も示します。
論文 参考訳(メタデータ) (2023-05-23T16:07:58Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - MalProtect: Stateful Defense Against Adversarial Query Attacks in
ML-based Malware Detection [0.0]
MalProtectは、マルウェア検出ドメインにおけるクエリアタックに対するステートフルな防御である。
以上の結果から,Android および Windows マルウェアにおいて,敵クエリ攻撃の回避率を 80 % 削減できることが示唆された。
論文 参考訳(メタデータ) (2023-02-21T15:40:19Z) - Effectiveness of Moving Target Defenses for Adversarial Attacks in
ML-based Malware Detection [0.0]
近年,敵ML攻撃に対する標的防御(MTD)の移動が提案されている。
マルウェア検出領域に適用した敵ML攻撃に対する最近のMTDの有効性を初めて検討した。
転送可能性とクエリアタック戦略は,これらの防御に対して高いレベルの回避を達成できることを示す。
論文 参考訳(メタデータ) (2023-02-01T16:03:34Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware
Detection [8.551227913472632]
悪意のある機能を損なうことなく、マルウェアの例を妨害する新たな攻撃手法を提案する。
このことは、ディープニューラルネットワークのアンサンブルを強化するために、敵のトレーニングの新たなインスタンス化につながる。
2つの実用的なデータセットに対する26の異なる攻撃に対して,Androidマルウェア検出器を用いた防御評価を行った。
論文 参考訳(メタデータ) (2020-06-30T05:56:33Z) - A Framework for Enhancing Deep Neural Networks Against Adversarial
Malware [31.026476033245764]
敵のマルウェア回避攻撃に対するディープニューラルネットワークの堅牢性を高めるための防御フレームワークを提案する。
このフレームワークはAICSの2019年のチャレンジに76.02%の精度で勝利し、攻撃者(すなわちチャレンジオーガナイザ)はフレームワークや防御を知らないし、我々(ディフェンダー)も攻撃を知らない。
論文 参考訳(メタデータ) (2020-04-15T07:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。