The challenges of deploying artificial intelligence models in a rapidly
evolving pandemic
- URL: http://arxiv.org/abs/2005.12137v1
- Date: Tue, 19 May 2020 21:11:48 GMT
- Title: The challenges of deploying artificial intelligence models in a rapidly
evolving pandemic
- Authors: Yipeng Hu, Joseph Jacob, Geoffrey JM Parker, David J Hawkes, John R
Hurst, Danail Stoyanov
- Abstract summary: We argue that both basic and applied research are essential to accelerate the potential of AI models.
This perspective may provide a glimpse into how the global scientific community should react to combat future disease outbreaks more effectively.
- Score: 10.188172055060544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic, caused by the severe acute respiratory syndrome
coronavirus 2, emerged into a world being rapidly transformed by artificial
intelligence (AI) based on big data, computational power and neural networks.
The gaze of these networks has in recent years turned increasingly towards
applications in healthcare. It was perhaps inevitable that COVID-19, a global
disease propagating health and economic devastation, should capture the
attention and resources of the world's computer scientists in academia and
industry. The potential for AI to support the response to the pandemic has been
proposed across a wide range of clinical and societal challenges, including
disease forecasting, surveillance and antiviral drug discovery. This is likely
to continue as the impact of the pandemic unfolds on the world's people,
industries and economy but a surprising observation on the current pandemic has
been the limited impact AI has had to date in the management of COVID-19. This
correspondence focuses on exploring potential reasons behind the lack of
successful adoption of AI models developed for COVID-19 diagnosis and
prognosis, in front-line healthcare services. We highlight the moving clinical
needs that models have had to address at different stages of the epidemic, and
explain the importance of translating models to reflect local healthcare
environments. We argue that both basic and applied research are essential to
accelerate the potential of AI models, and this is particularly so during a
rapidly evolving pandemic. This perspective on the response to COVID-19, may
provide a glimpse into how the global scientific community should react to
combat future disease outbreaks more effectively.
Related papers
- COVID-19 Spreading Prediction and Impact Analysis by Using Artificial
Intelligence for Sustainable Global Health Assessment [0.0]
The current epidemic of COVID-19 has influenced more than 2,164,111 persons and killed more than 146,198 folks in over 200 countries across the globe.
The fundamental difficulties of AI in this situation is the limited availability of information and the uncertain nature of the disease.
Here in this article, we have tried to integrate AI to predict the infection outbreak and along with this, we have also tried to test whether AI with help deep learning can recognize COVID-19 infected chest X-Rays or not.
arXiv Detail & Related papers (2023-04-23T19:48:29Z) - Examining the Implementation of Digital Health to Strengthen the
COVID-19 Pandemic Response and Recovery and Scale up Equitable Vaccine Access
in African Countries [0.8602553195689513]
Africa faces a heavy disease burden that exacerbates the current COVID-19 pandemic.
We examined the potential impact of transformative digital health technologies in mitigating the global health crisis.
arXiv Detail & Related papers (2022-06-03T23:43:49Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - A Survey on Applications of Artificial Intelligence in Fighting Against
COVID-19 [75.84689958489724]
The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak.
As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic.
This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19.
arXiv Detail & Related papers (2020-07-04T22:48:15Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Visualising COVID-19 Research [4.664989082015335]
We develop a novel automated theme-based visualisation method.
It combines advanced data modelling of large corpora, information mapping and trend analysis.
It provides a top-down and bottom-up browsing and search interface for quick discovery of topics and research resources.
arXiv Detail & Related papers (2020-05-13T15:45:14Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.