Magic trapping of a Rydberg ion with a diminished static polarizability
- URL: http://arxiv.org/abs/2005.12422v1
- Date: Mon, 25 May 2020 21:57:31 GMT
- Title: Magic trapping of a Rydberg ion with a diminished static polarizability
- Authors: Fabian Pokorny, Chi Zhang, Gerard Higgins and Markus Hennrich
- Abstract summary: We engineer a Rydberg state that is insensitive to electric fields by coupling two Rydberg states with static polarizabilities of opposite sign.
We show that the magically-trapped ion can be coherently excited to the Rydberg state without the need for control of the ion's motion.
- Score: 5.5922849070931795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Highly excited Rydberg states are usually extremely polarizable and
exceedingly sensitive to electric fields. Because of this Rydberg ions confined
in electric fields have state-dependent trapping potentials. We engineer a
Rydberg state that is insensitive to electric fields by coupling two Rydberg
states with static polarizabilities of opposite sign, in this way we achieve
state-independent magic trapping. We show that the magically-trapped ion can be
coherently excited to the Rydberg state without the need for control of the
ion's motion.
Related papers
- Impact of micromotion on the excitation of Rydberg states of ions in a Paul trap [0.0]
We develop a model describing a single trapped Rydberg ion, which we solve numerically via Floquet theory and analytically using a perturbative approach.
We analyze in which parameter regimes addressable and energetically isolated Rydberg lines persist, which are an important requirement for conducting coherent manipulations.
arXiv Detail & Related papers (2024-10-31T15:42:29Z) - Electric field control for experiments with atoms in Rydberg states [4.688080053195396]
Atoms in Rydberg states have large polarizabilities, making them highly sensitive to electric fields.
It is therefore essential to cancel these stray electric fields.
We present a novel, simple, and highly-compact electrode assembly, implemented in a glass cell-based vacuum chamber design, for stray electric field cancellation.
arXiv Detail & Related papers (2024-09-18T10:38:00Z) - Charged ultralong-range Rydberg trimers [0.0]
Long-range ion-Rydberg molecules can be divided into two families of states, which are characterised by their unique electronic structures.
We predict that in both cases these diatomic molecular states can bind additional ground state atoms lying within the orbit of the Rydberg electron.
The predicted trimer binding energies and excitation series are distinct enough to be observed using current experimental techniques.
arXiv Detail & Related papers (2022-11-24T14:48:27Z) - Rydberg ions in coherent motional states: A new method for determining
the polarizability of Rydberg ions [71.05995184390709]
We present a method for measuring the polarizability of Rydberg ions confined in a Paul trap.
The method is easy-to-implement and applicable to different Rydberg states regardless of their principal or angular quantum numbers.
arXiv Detail & Related papers (2022-08-23T17:56:50Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Coherently delocalized states in dipole interacting Rydberg ensembles:
the role of internal degeneracies [62.997667081978825]
Degeneracies can enhance the delocalization compared to the situation when there is no degeneracy.
We controllably lift the degeneracy to study in detail the transition between degenerate and non-degenerate regimes.
arXiv Detail & Related papers (2021-03-14T18:16:00Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Trapped Rydberg ions: a new platform for quantum information processing [27.84400682210533]
Trapped Rydberg ions feature several important properties, unique in their combination.
High fidelity state preparation of both internal and motional states of the ions has been demonstrated.
Strong dipolar interactions can be realised between ions in Rydberg states.
arXiv Detail & Related papers (2020-03-19T16:37:46Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.