Electric field control for experiments with atoms in Rydberg states
- URL: http://arxiv.org/abs/2409.11865v1
- Date: Wed, 18 Sep 2024 10:38:00 GMT
- Title: Electric field control for experiments with atoms in Rydberg states
- Authors: Aishik Panja, Yupeng Wang, Xinghan Wang, Junjie Wang, Sarthak Subhankar, Qi-Yu Liang,
- Abstract summary: Atoms in Rydberg states have large polarizabilities, making them highly sensitive to electric fields.
It is therefore essential to cancel these stray electric fields.
We present a novel, simple, and highly-compact electrode assembly, implemented in a glass cell-based vacuum chamber design, for stray electric field cancellation.
- Score: 4.688080053195396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atoms excited to Rydberg states have recently emerged as a valuable resource in neutral atom platforms for quantum computation, quantum simulation, and quantum information processing. Atoms in Rydberg states have large polarizabilities, making them highly sensitive to electric fields. Therefore, stray electric fields can decohere these atoms, in addition to compromising the fidelity of engineered interactions between them. It is therefore essential to cancel these stray electric fields. Here we present a novel, simple, and highly-compact electrode assembly, implemented in a glass cell-based vacuum chamber design, for stray electric field cancellation. The electrode assembly allows for full 3D control of the electric field in the vicinity of the atoms while blocking almost no optical access. We experimentally demonstrate the cancellation of stray electric fields to better than 10 mV/cm using this electrode assembly.
Related papers
- Impact of micromotion on the excitation of Rydberg states of ions in a Paul trap [0.0]
We develop a model describing a single trapped Rydberg ion, which we solve numerically via Floquet theory and analytically using a perturbative approach.
We analyze in which parameter regimes addressable and energetically isolated Rydberg lines persist, which are an important requirement for conducting coherent manipulations.
arXiv Detail & Related papers (2024-10-31T15:42:29Z) - Rydberg-atom manipulation through strong interaction with free electrons [0.0]
We theoretically investigate the interaction between free electrons and individual Rydberg atoms as an approach to induce nondipolar transitions.
Our results support free electrons as powerful tools to manipulate Rydberg atoms in previously inaccessible ways.
arXiv Detail & Related papers (2024-09-27T17:00:13Z) - Engineering artificial atomic systems of giant electric dipole moment [1.696359666187395]
We propose a scheme for engineering the potential in a Paul trap to realize a two-level quantum system with a giant EDM formed by the motional states of a trapped electron.
We show that, under realistic experimental conditions, the EDM can significantly exceed the ones attainable with Rydberg atoms.
arXiv Detail & Related papers (2023-04-21T04:07:51Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Optical coherent manipulation of alkaline-earth circular Rydberg states [0.0]
We show how to use the electrostatic coupling between the two electrons of strontium to coherently manipulate a circular Rydberg state with optical pulses.
This experiment opens the way to a state-selective spatially-resolved non-destructive detection of the circular states.
arXiv Detail & Related papers (2021-11-29T12:52:09Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.