論文の概要: Region-adaptive Texture Enhancement for Detailed Person Image Synthesis
- arxiv url: http://arxiv.org/abs/2005.12486v1
- Date: Tue, 26 May 2020 02:33:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 00:14:34.170310
- Title: Region-adaptive Texture Enhancement for Detailed Person Image Synthesis
- Title(参考訳): 詳細な人物画像合成のための領域適応型テクスチャ強調
- Authors: Lingbo Yang, Pan Wang, Xinfeng Zhang, Shanshe Wang, Zhanning Gao,
Peiran Ren, Xuansong Xie, Siwei Ma, Wen Gao
- Abstract要約: RATE-Netは、シャープなテクスチャで人物画像を合成するための新しいフレームワークである。
提案するフレームワークは,テクスチャ強化モジュールを利用して,画像から外観情報を抽出する。
DeepFashionベンチマークデータセットで実施された実験は、既存のネットワークと比較して、我々のフレームワークの優位性を実証した。
- 参考スコア(独自算出の注目度): 86.69934638569815
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The ability to produce convincing textural details is essential for the
fidelity of synthesized person images. However, existing methods typically
follow a ``warping-based'' strategy that propagates appearance features through
the same pathway used for pose transfer. However, most fine-grained features
would be lost due to down-sampling, leading to over-smoothed clothes and
missing details in the output images. In this paper we presents RATE-Net, a
novel framework for synthesizing person images with sharp texture details. The
proposed framework leverages an additional texture enhancing module to extract
appearance information from the source image and estimate a fine-grained
residual texture map, which helps to refine the coarse estimation from the pose
transfer module. In addition, we design an effective alternate updating
strategy to promote mutual guidance between two modules for better shape and
appearance consistency. Experiments conducted on DeepFashion benchmark dataset
have demonstrated the superiority of our framework compared with existing
networks.
- Abstract(参考訳): 合成された人物画像の忠実性には、説得力のあるテクスチャ詳細を作成する能力が不可欠である。
しかしながら、既存のメソッドは通常、ポーズ転送に使用されるのと同じ経路を通じて外観特徴を伝播する `warping-based'' 戦略に従う。
しかし、ほとんどの細かい特徴は、ダウンサンプリングによって失われ、過度にスムースな衣服と出力画像の細部が失われる。
本稿では,鮮明なテクスチャで人物画像を合成する新しいフレームワークであるRATE-Netを提案する。
提案手法では, テクスチャ強化モジュールを付加することにより, ソース画像から外観情報を抽出し, 細粒度残留テクスチャマップを推定し, ポーズ伝達モジュールからの粗さ推定を洗練する。
さらに,2つのモジュール間の相互誘導を向上し,形状と外観の整合性を向上する効果的な代替更新戦略を設計する。
DeepFashionベンチマークデータセットで実施された実験は、既存のネットワークと比較して、我々のフレームワークの優位性を実証した。
関連論文リスト
- ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
我々は,高品質でリアルな肖像画を復元することを目的とした,ブラインドフェイス修復のための新しいフレームワークであるENTEDを提案する。
劣化した入力画像と参照画像の間で高品質なテクスチャ特徴を伝達するために,テクスチャ抽出と分布の枠組みを利用する。
われわれのフレームワークにおけるStyleGANのようなアーキテクチャは、現実的な画像を生成するために高品質な潜伏符号を必要とする。
論文 参考訳(メタデータ) (2024-01-13T04:54:59Z) - TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose
Estimation [55.94900327396771]
合成データから6次元オブジェクトポーズ推定のためのニューラルネットワークによるテクスチャ学習を提案する。
実画像からオブジェクトの現実的なテクスチャを予測することを学ぶ。
画素完全合成データからポーズ推定を学習する。
論文 参考訳(メタデータ) (2022-12-25T13:36:32Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Unsupervised Structure-Consistent Image-to-Image Translation [6.282068591820945]
Swapping Autoencoderは、ディープイメージ操作と画像から画像への変換において最先端のパフォーマンスを達成した。
我々は、勾配反転層に基づく単純で効果的な補助モジュールを導入することにより、この作業を改善する。
補助モジュールの損失は、ジェネレータが全ゼロテクスチャコードでイメージを再構築することを学ぶことを強制する。
論文 参考訳(メタデータ) (2022-08-24T13:47:15Z) - UMFA: A photorealistic style transfer method based on U-Net and
multi-layer feature aggregation [0.0]
本稿では,フォトリアリスティックなイメージスタイリングの自然な効果を強調するために,フォトリアリスティックなスタイル転送ネットワークを提案する。
特に、高密度ブロックに基づくエンコーダとU-Netの対称構造を形成するデコーダとを連立して、効率的な特徴抽出と画像再構成を実現する。
論文 参考訳(メタデータ) (2021-08-13T08:06:29Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
制御可能な人物画像生成は、望ましい属性を持つ現実的な人間の画像を作成することを目的としている。
本稿では,学習フロー場とワープ変調パラメータを統合した空間適応型ワープ正規化(SAWN)を提案する。
本稿では,テクスチャ・トランスファータスクの事前学習モデルを洗練するための,新たな自己学習部分置換戦略を提案する。
論文 参考訳(メタデータ) (2021-05-31T07:07:44Z) - Co-occurrence Based Texture Synthesis [25.4878061402506]
本稿では,共起統計に基づいて局所的に条件付けされた完全畳み込み生成対向ネットワークを提案し,任意に大きな画像を生成する。
本手法はテクスチャ合成のための安定的で直感的で解釈可能な潜在表現を提供する。
論文 参考訳(メタデータ) (2020-05-17T08:01:44Z) - Towards Analysis-friendly Face Representation with Scalable Feature and
Texture Compression [113.30411004622508]
普遍的で協調的な視覚情報表現は階層的な方法で実現できることを示す。
ディープニューラルネットワークの強力な生成能力に基づいて、基本特徴層と強化層の間のギャップは、特徴レベルのテクスチャ再構築によってさらに埋められる。
提案するフレームワークの効率を改善するために,ベース層ニューラルネットワークをマルチタスクでトレーニングする。
論文 参考訳(メタデータ) (2020-04-21T14:32:49Z) - SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On [14.198545992098309]
SieveNetは、堅牢なイメージベースの仮想トライオンのためのフレームワークである。
細粒度精度をモデル化する多段粗いワープネットワークを提案する。
また,テクスチャ伝達ネットワークを改善するために,試着型布条件セグメンテーションマスクを導入する。
論文 参考訳(メタデータ) (2020-01-17T12:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。