論文の概要: CalliGAN: Style and Structure-aware Chinese Calligraphy Character
Generator
- arxiv url: http://arxiv.org/abs/2005.12500v1
- Date: Tue, 26 May 2020 03:15:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 00:13:44.853558
- Title: CalliGAN: Style and Structure-aware Chinese Calligraphy Character
Generator
- Title(参考訳): CalliGAN: スタイルと構造を意識した中国の書体文字生成装置
- Authors: Shan-Jean Wu, Chih-Yuan Yang and Jane Yung-jen Hsu
- Abstract要約: 書道(きゅうりょう)とは、筆で行う芸術形式としての漢字の書法である。
近年の研究では、1つのモデルを用いて複数のスタイルのイメージ・ツー・イメージ翻訳によって漢字を生成することができることが示されている。
そこで本研究では,漢字の成分情報をモデルに組み込んだ新しい手法を提案する。
- 参考スコア(独自算出の注目度): 6.440233787863018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chinese calligraphy is the writing of Chinese characters as an art form
performed with brushes so Chinese characters are rich of shapes and details.
Recent studies show that Chinese characters can be generated through
image-to-image translation for multiple styles using a single model. We propose
a novel method of this approach by incorporating Chinese characters' component
information into its model. We also propose an improved network to convert
characters to their embedding space. Experiments show that the proposed method
generates high-quality Chinese calligraphy characters over state-of-the-art
methods measured through numerical evaluations and human subject studies.
- Abstract(参考訳): 漢字の書は、筆で行う芸術形式としての漢字の筆跡であり、字形や細部が豊富である。
近年の研究では、1つのモデルを用いて複数のスタイルに対する画像から画像への変換によって漢字を生成することができる。
そこで本研究では,漢字の成分情報をモデルに組み込んだ新しい手法を提案する。
また,文字を埋め込み空間に変換するネットワークの改良も提案する。
実験により, 提案手法は, 数値評価と人文研究により, 最新技術を用いて, 高品質な漢字を生成することを示した。
関連論文リスト
- MetaScript: Few-Shot Handwritten Chinese Content Generation via
Generative Adversarial Networks [15.037121719502606]
漢字のデジタル表現における個人的手書きスタイルの存在感の低下に対処する新しいコンテンツ生成システムであるMetaScriptを提案する。
本手法は,個人固有の手書きスタイルを保ち,デジタルタイピングの効率を維持できる漢字を生成するために,数ショット学習の力を利用する。
論文 参考訳(メタデータ) (2023-12-25T17:31:19Z) - Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through
Image-IDS Aligning [61.34060587461462]
中国語テキスト認識(CTR)のための2段階フレームワークを提案する。
印刷文字画像とIdeographic Description Sequences (IDS) の整列によるCLIP様モデルの事前学習を行う。
この事前学習段階は、漢字を認識する人間をシミュレートし、各文字の標準表現を得る。
学習された表現はCTRモデルを監督するために使用され、従来の単一文字認識はテキストライン認識に改善される。
論文 参考訳(メタデータ) (2023-09-03T05:33:16Z) - VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
本稿では,VQGANベースのフレームワーク(VQ-Font)を提案する。
具体的には、コードブック内でフォントトークンをカプセル化するために、VQGANを事前訓練する。その後、VQ-Fontは、合成したグリフをコードブックで洗練し、合成されたストロークと実世界のストロークのドメインギャップをなくす。
論文 参考訳(メタデータ) (2023-08-27T06:32:20Z) - Calliffusion: Chinese Calligraphy Generation and Style Transfer with
Diffusion Modeling [1.856334276134661]
拡散モデルを用いて高品質な漢字書体を生成するシステムであるCaliffusionを提案する。
我々のモデルアーキテクチャはDDPM(Denoising Diffusion Probabilistic Models)に基づいている
論文 参考訳(メタデータ) (2023-05-30T15:34:45Z) - Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language
Pre-training [50.100992353488174]
辞書知識と漢字の構造を持つ中国語PLMの意味理解能力を高める新しい学習パラダイムであるCDBERTを紹介する。
我々はCDBERTの2つの中核モジュールを Shuowen と Jiezi と名付け、そこで Shuowen は中国語辞書から最も適切な意味を取り出す過程を指す。
本パラダイムは,従来の中国語PLMのタスク間における一貫した改善を実証する。
論文 参考訳(メタデータ) (2023-05-30T05:48:36Z) - Stroke-Based Autoencoders: Self-Supervised Learners for Efficient
Zero-Shot Chinese Character Recognition [4.64065792373245]
我々は漢字の洗練された形態をモデル化するストロークベースのオートエンコーダを開発した。
我々のSAEアーキテクチャは、ゼロショット認識において、他の既存の手法よりも優れています。
論文 参考訳(メタデータ) (2022-07-17T14:39:10Z) - ZiGAN: Fine-grained Chinese Calligraphy Font Generation via a Few-shot
Style Transfer Approach [7.318027179922774]
ZiGANは、強力なエンドツーエンドの漢字フォント生成フレームワークである。
微粒なターゲットスタイルの文字を生成するために手動操作や冗長な前処理を一切必要としない。
提案手法は,数発の漢字スタイル転送における最先端の一般化能力を有する。
論文 参考訳(メタデータ) (2021-08-08T09:50:20Z) - ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin
Information [32.70080326854314]
我々は,漢字のグリフとピニイン情報を事前学習に組み込んだ ChineseBERT を提案する。
提案した ChineseBERT モデルは,トレーニングステップの少ないベースラインモデルよりも大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-06-30T13:06:00Z) - SHUOWEN-JIEZI: Linguistically Informed Tokenizers For Chinese Language
Model Pretraining [48.880840711568425]
事前学習された言語モデルの中国語トークン化に対する3つの要因の影響について検討する。
本稿では,発音に基づくトークン化システムであるSHUOWEN (Talk Word) と,グリフに基づくトークン化システムであるJIEZI (Solve Character) の3種類のトークン化手法を提案する。
SHUOWENとJIEZIは、一般的に従来のシングル文字トークンよりも優れた性能を持つ。
論文 参考訳(メタデータ) (2021-06-01T11:20:02Z) - Generating Adversarial Examples in Chinese Texts Using Sentence-Pieces [60.58900627906269]
文片を用いた代用ジェネレータとして,中国語の逆例を作成できる事前学習型言語モデルを提案する。
生成した敵の例の置換は文字や単語ではなく「テキスト」であり、中国の読者にとって自然である。
論文 参考訳(メタデータ) (2020-12-29T14:28:07Z) - Generating Major Types of Chinese Classical Poetry in a Uniformed
Framework [88.57587722069239]
GPT-2に基づく漢詩の主要なタイプを生成するフレームワークを提案する。
予備的な結果は、この強化されたモデルが、形も内容も質の高い大型漢詩を生成できることを示している。
論文 参考訳(メタデータ) (2020-03-13T14:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。